第四章 t-检验.ppt

上传人:hyn****60 文档编号:70487184 上传时间:2023-01-20 格式:PPT 页数:22 大小:1.78MB
返回 下载 相关 举报
第四章 t-检验.ppt_第1页
第1页 / 共22页
第四章 t-检验.ppt_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《第四章 t-检验.ppt》由会员分享,可在线阅读,更多相关《第四章 t-检验.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章第四章 t-检验检验 百分率资料的假设检验百分率资料的假设检验 小样本均数的假设检验小样本均数的假设检验 统计假设检验的基本原理统计假设检验的基本原理 统计假设检验又称为显著性检验,是生物统计学的核心内容,是统计推断的主要组成部分第一节 统计假设检验的基本原理统计推断(statistical inference)就是通过样本特征(统计量)来推断相应总体特征(参数)的方法n 参数估计(参数估计(parametric estimate)通过样本统计量估计总体参数的方法通过样本统计量估计总体参数的方法 点估计(点估计(point estimate)区间估计(区间估计(interval esti

2、mate)直接用样本统计量的数值估计出相应总体参数具体值的方法直接用样本统计量的数值估计出相应总体参数具体值的方法在一定的概率保证下(一般为在一定的概率保证下(一般为95%或或99%),根据样本统计量的分布,计),根据样本统计量的分布,计算出总体参数出现的数值范围或区间,用该区间来估计总体参数的方法算出总体参数出现的数值范围或区间,用该区间来估计总体参数的方法 参数估计是对总体参数的参数估计是对总体参数的定量分析定量分析 n 统计假设检验(统计假设检验(hypothesis test)根据某种实际需要,对未知的或不完全知道的总体参数提出一些假设,根据某种实际需要,对未知的或不完全知道的总体参数

3、提出一些假设,然后根据样本观测值和统计量的分布,通过一定的计算,再作出在一定然后根据样本观测值和统计量的分布,通过一定的计算,再作出在一定概率意义上应当接受哪种假设的方法概率意义上应当接受哪种假设的方法 统计假设检验的假设是对总体提出的,最后检验的结论只有两种:要比统计假设检验的假设是对总体提出的,最后检验的结论只有两种:要比较的总体参数间要么存在显著差异,要么不存在显著差异较的总体参数间要么存在显著差异,要么不存在显著差异 统计假设检验是对总体参数的统计假设检验是对总体参数的定性分析定性分析 1.统计假设检验的意义统计假设检验的意义 以两个平均数之间差异的显著性检验以两个平均数之间差异的显著

4、性检验 t-检验为例检验为例现随机挑选10名中国美女和10名韩国美女,请世界选美大赛评委和观众进行评分,试比较哪个国家美女更美?9.999.859.999.959.989.979.959.95中国美女的平均得分9.98韩国美女的平均得分9.91两个国家美女的平均得分并不相等,其差值(表面效应)为:两个国家美女的平均得分并不相等,其差值(表面效应)为:根据两个样本平均数的差值根据两个样本平均数的差值0.07,是否可以给两个样本所在总体的总体平,是否可以给两个样本所在总体的总体平均数下这样的结论:均数下这样的结论:中国美女总体的平均得分高于韩国美女总体的平均得分中国美女比韩国美女漂亮 如果从经典数

5、学的角度来看,答案应该是肯定如果从经典数学的角度来看,答案应该是肯定 如果从生物统计学的角度来看,在未经过统计假设检验以前,只能如果从生物统计学的角度来看,在未经过统计假设检验以前,只能说说“不一定不一定”事实上,仅仅凭借样本平均数之差不等于事实上,仅仅凭借样本平均数之差不等于0就得出其所属的总体平均数不相就得出其所属的总体平均数不相等是不可靠的等是不可靠的 实际上,进行试验研究的目的并不在于了解样本的结果,而是要通过样本了实际上,进行试验研究的目的并不在于了解样本的结果,而是要通过样本了解总体,通过样本来推断总体,从而对总体给出一个全面的结论解总体,通过样本来推断总体,从而对总体给出一个全面

6、的结论 在在统计统计学中,一般用学中,一般用样样本平均数本平均数 、作为统计假设检验的对象作为统计假设检验的对象、以样本平均数差数的大小来对样本所在的总体平均数以样本平均数差数的大小来对样本所在的总体平均数1与与2是否相同作出是否相同作出统计推断统计推断 以样本平均数作为检验对象的依据:离均差平方和为最小,说明样本平均数与样本中各个观测值之间相差最离均差平方和为最小,说明样本平均数与样本中各个观测值之间相差最小,因此,平均数是一个样本资料的最好代表值小,因此,平均数是一个样本资料的最好代表值 样本平均数是总体平均数的无偏估计值样本平均数是总体平均数的无偏估计值 根据中心极限定理,样本平均数服从

7、或逼近正态分布根据中心极限定理,样本平均数服从或逼近正态分布实际上,每个观测值(数据)都只是试验的表面效应,而表面效应一般由两部分组成:试验的处理效应试验的处理效应 试验的随机误差试验的随机误差 样本中每一观测值样本中每一观测值xi可以被分解成两部分:可以被分解成两部分:处理效应:处理效应:用总体平均数用总体平均数表示表示 误差效应:误差效应:用随机误差用随机误差表示表示 样本平均数为:样本平均数为:总体平总体平均数均数样本平均数的差数也可分解成样本平均数的差数也可分解成2部分:部分:误差平误差平均数均数表面表面效应效应处理处理效应效应抽样抽样误差误差2.统计假设检验的步骤统计假设检验的步骤

8、统计假设检验的基本原理和思路:首先根据具体试验目的提出一个假设 然后在假定该假设成立(或正确)的前提下进行试验,并取得数据,接着对这些资料进行统计分析,获得该假设成立的概率 最后根据所获得的概率值的大小来判断假设是否成立 如果所得概率较大,就表明我们没有足够的理由来否定所作假设,即必须接受这一假设 如果所得概率较小,就表明这一假设不大可能成立,应予否定,从而接受其对立假设 例4-1:通过以往的大规模调查,已知某地成年黑白花奶牛产奶量为52.3,标准差为5.38,现测得10头黑白花奶牛产奶量分别为53.6,55.3,46.4,57.2,46.0,43.2,48.1,51.1,49.9,44.5;

9、=49.53。试问这批黑白花奶牛是否来自于某地黑白花奶牛总体?(1)对所研究的总体提出假设对所研究的总体提出假设研究某一随机样本所在的总体(用研究某一随机样本所在的总体(用表示)和一已知总体(用表示)和一已知总体(用0表示)是否表示)是否为同一总体,也就是研究这一随机样本是否来自于已知总体为同一总体,也就是研究这一随机样本是否来自于已知总体 假设:假设:两个总体为同一个总体(即两个总体的总体平均数相等)两个总体为同一个总体(即两个总体的总体平均数相等)无效假设(无效假设(null hypothesis)用用H0表示表示 即即H0:=0 无效假设的含义:无效假设就是假设两总体的平均数相等,即H0

10、:假设样本平均数 与已知总体平均数 由抽样误差引起的,并不是两总体之间的真实差异 两总体之间的差异是由抽样误差所引起的为了在无效假设被否定后有可以被接受的假设,因此应在设立无效假设的同为了在无效假设被否定后有可以被接受的假设,因此应在设立无效假设的同时设立一个后备假设时设立一个后备假设 备择假设(备择假设(alternative hypothesis)用用HA表示表示 即即HA:备择假设的统计学意义:样本所在总体与已知总体不是同一个总体,即两总体的平均数不等,即:两总体之间的差异是真实差异,而不是由抽样误差引起的 统计假设检验中完整的假设是:统计假设检验中完整的假设是:两总体之间的差异是真实差

11、异(2)在假定无效假设成立的前提下,研究样本平均数的抽样分布,计算样在假定无效假设成立的前提下,研究样本平均数的抽样分布,计算样本平均数出现的概率本平均数出现的概率样本平均数与总体平均数间有一个实际存在的差值:样本平均数与总体平均数间有一个实际存在的差值:这个差值就是表面效应,可能是抽样误差,也可能是真实差异,因此需要这个差值就是表面效应,可能是抽样误差,也可能是真实差异,因此需要借助概率原理来进行判断借助概率原理来进行判断 n 第一种方法:计算差值-2.77出现的概率在无效假设成立的前提下,样本所在的总体与已知总体为同一个总体,因在无效假设成立的前提下,样本所在的总体与已知总体为同一个总体,

12、因此样本所在总体的总体平均数和方差已知,即:此样本所在总体的总体平均数和方差已知,即:由于总体方差已知,根据标准正态分布就可以计算出差值由于总体方差已知,根据标准正态分布就可以计算出差值-2.77出现的概率出现的概率 0.10.11n 第二种方法:计算样本平均数的接受区间根据标准化公式计算样本平均数的接受区间:根据标准化公式计算样本平均数的接受区间:接受区间接受区间否定区间否定区间接受区间和否定区间是有一定的概率保证的,保证概率为接受区间和否定区间是有一定的概率保证的,保证概率为1-,常用的保,常用的保证概率为证概率为95%和和99%;为显著水平,常用的显著水平有为显著水平,常用的显著水平有0

13、.05和和0.01倘若样本平均数落在接受区间内,就接受倘若样本平均数落在接受区间内,就接受H0,反之,倘若样本平均数落在,反之,倘若样本平均数落在接受区间之外,就否定接受区间之外,就否定H0,接受,接受HA作为作为0.05显著水平上接受或否定无效假设的两个临界值显著水平上接受或否定无效假设的两个临界值 作为作为0.01显著水平上接受或否定无效假设的两个临界值显著水平上接受或否定无效假设的两个临界值 95%的接受区间为:的接受区间为:99%的接受区间为:的接受区间为:(3)根据根据“小概率事件实际不可能性原理小概率事件实际不可能性原理”接受或否定无效假设接受或否定无效假设小概率事件实际不可能性原

14、理是指在一次试验中,概率很小的事件是不可小概率事件实际不可能性原理是指在一次试验中,概率很小的事件是不可能出现的能出现的 在统计学中,当样本平均数与总体平均数差值出现的概率小于在统计学中,当样本平均数与总体平均数差值出现的概率小于5%时,就认时,就认为这种差异由抽样误差引起的概率较小,而是两总体间的真实性差异,从为这种差异由抽样误差引起的概率较小,而是两总体间的真实性差异,从而否定无效假设而否定无效假设 差值差值-2.77出现的概率为出现的概率为0.10.11,大于,大于0.05,概率较大,概率较大;说明样本平均数;说明样本平均数与已知总体的总体平均数之间的差异是抽样误差的概率较大,而不大可能

15、是与已知总体的总体平均数之间的差异是抽样误差的概率较大,而不大可能是真实差异真实差异 接受无效假设,也就是说这批黑白花奶牛是来自于某地黑白花奶牛总体。接受无效假设,也就是说这批黑白花奶牛是来自于某地黑白花奶牛总体。总结:统计假设检验的步骤(1)提出假设)提出假设(2)计算样本平均数抽样分布的)计算样本平均数抽样分布的t值或值或u值值(3)查附表,根据小概率原理作出接受或者否定无效假设的推断,并结)查附表,根据小概率原理作出接受或者否定无效假设的推断,并结合专业知识作出合理的、科学的解释合专业知识作出合理的、科学的解释 例4-2:1995年,已知某地20岁应征男青年的平均身高为168.5cm。2

16、005年在当地20岁应征男青年中随机抽取85人,平均身高为171.2cm,标准差为5.3cm,问2005年当地20岁应征男青年的身高与1995年的是否相同?解:解:(1)提出假设)提出假设H0:=168.5HA:168.5与与1995年相比,年相比,2005年当地年当地20岁应征男青年的身高没有变化岁应征男青年的身高没有变化 与与1995年相比,年相比,2005年当地年当地20岁应征男青年的身高有变化岁应征男青年的身高有变化(2)计算)计算u值值(3)查表,作出推断)查表,作出推断 u0.05=1.96,u0.01=2.58|u|=4.70 2.58=u0.01,P0.01 根据根据“小概率事

17、件原理小概率事件原理”可以认为无效假设不成立,因此否定无效假设,可以认为无效假设不成立,因此否定无效假设,接受备择假设接受备择假设 样本不是来自于已知总体,即样本不是来自于已知总体,即2005年当地年当地20岁应征男青年的身高有变化,岁应征男青年的身高有变化,比比1995年增高了年增高了 在显著性检验中,否定或接受无效假设的依据是在显著性检验中,否定或接受无效假设的依据是“小概率事件实际不可能性原小概率事件实际不可能性原理理”用来确定否定或接受无效假用来确定否定或接受无效假设设的概率的概率标标准称准称为显为显著水平,著水平,记记作作 若若|u|u0.05 P0.05,说明表面效应属于试验误差的

18、可能性大,不能否定无效假设,说明表面效应属于试验误差的可能性大,不能否定无效假设,两个总体平均数间两个总体平均数间差异不显著差异不显著 若若u0.05|u|u0.01 P0.05,说明表面效应属于试验误差的概率说明表面效应属于试验误差的概率P在在0.01-0.05之间,表面效应之间,表面效应属于试验误差的可能性较小,应否定无效假设,接受备择假设属于试验误差的可能性较小,应否定无效假设,接受备择假设 两个总体平均数间两个总体平均数间差异显著差异显著 标记标记*若若|u|u0.01 P0.01,说明表面效应属于试验误差的概率说明表面效应属于试验误差的概率P不超过不超过0.01,表面效应属于,表面效

19、应属于试验误差的可能性更小,应否定无效假设,接受备择假设试验误差的可能性更小,应否定无效假设,接受备择假设 两个总体平均数间两个总体平均数间差异极显著差异极显著 标记标记*课堂练习:太湖猪母猪成年体重为75,现从太湖猪产区随机抽得60个个体,平均成年体重为70.8,S=11.32,问该样本群就成年体重这一性状来看,是否与总体符合?3.一尾检验和两尾检验一尾检验和两尾检验 所研究样本的样本平均数,有可能大于已知总体的总体平均数,也有可能小所研究样本的样本平均数,有可能大于已知总体的总体平均数,也有可能小于已知总体的总体平均数,即计算所得的于已知总体的总体平均数,即计算所得的u值可能会落在标准正态

20、分布左边值可能会落在标准正态分布左边否定区,也有可能会落在右边否定区否定区,也有可能会落在右边否定区 既考虑左边否定区又考虑右边否定区即考虑分布曲线两尾的检验称为两尾既考虑左边否定区又考虑右边否定区即考虑分布曲线两尾的检验称为两尾检验(检验(two-tailed test)在很多情况下,事先并不知道所抽样本的样本平均数是不是肯定大于总体在很多情况下,事先并不知道所抽样本的样本平均数是不是肯定大于总体平均数或肯定小于总体平均数平均数或肯定小于总体平均数 因此,备择假设因此,备择假设HA:0中,有两种可能性存在,既包括中,有两种可能性存在,既包括0,又包括,又包括0 两尾检验是生物统计学中最常用的

21、方法,应用范围极其广泛两尾检验是生物统计学中最常用的方法,应用范围极其广泛 有些时候,试验目的是明确的,即所抽样本的样本平均数只可能大于总体有些时候,试验目的是明确的,即所抽样本的样本平均数只可能大于总体平均数平均数0,或只可能小于总体平均数,或只可能小于总体平均数0 在这种情况下,无效假设否定后的备择假设只有一种情况:要么在这种情况下,无效假设否定后的备择假设只有一种情况:要么0,要,要么么0 只有一个否定区(一尾)的假设检验称为一尾检验(只有一个否定区(一尾)的假设检验称为一尾检验(one-tailed test)n 两尾检验的假设:两尾检验的假设:H0:=0,HA:0 n 一尾检验的假设

22、:一尾检验的假设:H0:0,HA:0 在样本容量和显著水平相同的情况下,一尾检验的效率高于两尾检验,一在样本容量和显著水平相同的情况下,一尾检验的效率高于两尾检验,一尾检验比两尾检验更容易否定无效假设尾检验比两尾检验更容易否定无效假设 若对同一资料进行两尾检验和一尾检验,那么在若对同一资料进行两尾检验和一尾检验,那么在水平上一尾检验显著,只水平上一尾检验显著,只相当于两尾检验在相当于两尾检验在2水平上显著。所以,同一资料两尾检验与一尾检验所水平上显著。所以,同一资料两尾检验与一尾检验所得的结论不一定相同得的结论不一定相同两尾检验显著,一尾检验一定显著两尾检验显著,一尾检验一定显著一尾检验显著,

23、两尾检验未必显著一尾检验显著,两尾检验未必显著 4.假设检验的两类错误假设检验的两类错误 在假设检验中,接受或者否定无效假设的依据是在假设检验中,接受或者否定无效假设的依据是“小概率事件实际不可能小概率事件实际不可能性原理性原理”,因此所得出的结论(不论是接受还是否定无效假设)都没有,因此所得出的结论(不论是接受还是否定无效假设)都没有100%的把握,只是在一定的概率范围内认为这种结论是正确的的把握,只是在一定的概率范围内认为这种结论是正确的 4.1 第一类错误第一类错误 如果无效假设如果无效假设H0成立,即成立,即H0:=0为真,但:为真,但:检验结果发现检验结果发现“差异显著差异显著”而否

24、定了它(此时,只有而否定了它(此时,只有95%的把握,要冒的把握,要冒5%下错结论的风险)下错结论的风险)检验结果发现检验结果发现“差异极显著差异极显著”而否定了它(此时,只有而否定了它(此时,只有99%的把握,要的把握,要冒冒1%下错结论的风险)下错结论的风险)这一类错误称为这一类错误称为型错误或型错误或型错误型错误 型错误的实质就是把非真实差异(抽样误差)错判为真实差异,即:型错误的实质就是把非真实差异(抽样误差)错判为真实差异,即:H0:=0为真,却接受了HA:0 弃真弃真H0正确被否定正确被否定犯犯型错误的概率不会超过显著水平型错误的概率不会超过显著水平(5%、1%)4.2 第二类错误

25、第二类错误 如果无效假设如果无效假设H0不成立,即不成立,即H0:=0为假,但:为假,但:检验结果发现检验结果发现“差异不显著差异不显著”而接受了它,同时放弃了正确的备择假设而接受了它,同时放弃了正确的备择假设 在统计学中所谓的在统计学中所谓的“差异不显著差异不显著”就是指没有充分的理由去否定无效假设,就是指没有充分的理由去否定无效假设,但也没有充分的理由去接受备择假设,但生物统计学实行的是但也没有充分的理由去接受备择假设,但生物统计学实行的是“非此即彼非此即彼”的原则,因此,既然的原则,因此,既然“差异不显著差异不显著”就必须接受无效假设。就必须接受无效假设。这一类错误称为这一类错误称为型错

26、误或型错误或型错误型错误 型错误的实质就是把真实差异错判为非真实差异,即虽然型错误的实质就是把真实差异错判为非真实差异,即虽然H0:=0是假是假的,但通过检验却接受了的,但通过检验却接受了存伪存伪H0错误被接受错误被接受“差异不显著差异不显著”不是指没有差异,它存在不是指没有差异,它存在2种可能:一是两总体间的确没有种可能:一是两总体间的确没有差异,平均数间的差异纯属抽样误差;二是两总体间有差异,但由于实验差异,平均数间的差异纯属抽样误差;二是两总体间有差异,但由于实验误差大而掩盖了这一差异。误差大而掩盖了这一差异。统计推断的基本特点就是统计推断的基本特点就是“有很大的可靠性,但也有一定的错误率有很大的可靠性,但也有一定的错误率”两类错误与假设的关系两类错误与假设的关系 客 观 实 际接 受 H0否 定 H0无效假设H0成立推断正确(推断正确(1-)型错误(型错误()“弃真弃真”无效假设H0不成立型错误(型错误()“存伪存伪”推断正确(推断正确(1-)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁