《【教学课件】第9章平稳时间序列分析-第9章.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第9章平稳时间序列分析-第9章.ppt(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第9 9章章平稳时间序列分析平稳时间序列分析9.1 时间序列的概念序列的概念9.2 时间序列模型序列模型 9.2.1 白噪声序列 9.2.2 自回归模型 9.2.3 移动平均模型 9.2.4 自回归模型转化为移动平均模型9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数 9.3.1 自回归模型的平稳性 9.3.2 自回归模型的自相关函数平稳时间序列分析9.4 自回自回归模型定模型定阶和估和估计 9.4.1 自回归模型定阶 9.4.2 自回归模型估计 9.4.3 自回归模型再定阶信息准则9.5 自回自回归分布滞后模型分布滞后模型 9.5.1 自回归分布滞后模型 9.5.2 格兰杰因果
2、关系检验9.6 ARCH模型模型 9.6.1 ARCH模型的定义 9.6.2 ARCH模型估计重要概念重要概念9.1 时间序列的概念序列的概念设时点 处的观测为随机变量 ,这些随机变量形成一个时间序列,记为 或者 ,的一组具体取值称为时间序列的实现值(realization)。自相关函数(ACF:AutoCorrelation function)9.1 时间序列的概念序列的概念定义1(平稳性):如果时间序列 的数学期望、方差和协方差不随时间变化,即 称 为宽平稳(wide-sense stationary)时间序列。宽平稳也称为协方差平稳或者二阶矩平稳。9.1 时间序列的概念序列的概念严平稳:
3、时间序列中任意一组随机变量的联合分布不随时间发生变化,即对任意一组时间点 和时间间隔 ,的联合分布与 的联合分布相同,称 严平稳。二阶矩存在的严平稳时间序列一定宽平稳,宽平稳的时间序列不一定严平稳,本书只讨论宽平稳,将宽平稳时间序列简称为平稳时间序列。9.1 时间序列的概念序列的概念若 为平稳时间序列,则:(1)(2)满足大数定律,因此 分别是 、和 的一致估计。9.1 时间序列的概念序列的概念 表示 的 阶滞后,用滞后算符 表示为 例如 用滞后算符多项式表示为:9.2 时间序列模型序列模型9.2.1 白噪声序列9.2.2 自回归模型9.2.3 移动平均模型9.2.4 自回归模型转化为移动平均
4、模型9.2 时间序列模型序列模型9.2.1 白噪声序列定义2(白噪声):如果时间序列 满足:(1),(2)对任意 ,和 不相关,即 称 为白噪声序列,简称白噪声 (white noise)。是平稳时间序列的极端例子。9.2 时间序列模型序列模型9.2.2 自回归模型一阶自回归模型AR(1),为白噪声除了常数项以外,在 时刻的值由前定项(predetermined term)和与前期值不相关的新息(innovation)组成。阶自回归模型AR(k)9.2 时间序列模型序列模型9.2.2 自回归模型 模型 ,150个样本的时序图:9.2 时间序列模型序列模型 移动平均模型对一阶自回归模型进行递推:
5、当 时,9.2 时间序列模型序列模型 移动平均模型取有限项,上式即为 阶移动平均模型。9.2 时间序列模型序列模型9.2.4 自回归模型转化为移动平均模型 由于 在上述一阶自回归模型两边同乘9.2 时间序列模型序列模型9.2.4 自回归模型转化为移动平均模型可以转化为移动平均模型的自回归模型称为可逆的(invertible)。从上面推导可以看出,一阶自回归模型可逆的条件是 。实际上,自回归模型的可逆条件,是滞后多项式的根在单位圆外。滞后多项式即:9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.1 自回归模型的平稳性9.3.2 自回归模型的自相关函数9.3 自回自回归模型的平
6、模型的平稳性和相关函数性和相关函数9.3.1 自回归模型的平稳性 阶自回归模型:且 为白噪声序列 用滞后算子表达上式为:9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.1 自回归模型的平稳性u结论1:自回归模型平稳的充分必要条件为:滞后多项式的根都在单位圆之外,即方程 的根 满足 。其中 为实根时 表示绝对值,为虚根时 表示虚数的模。9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.1 自回归模型的平稳性滞后多项式的单位根均在单位圆内,则时间序列平稳;若有根为1,则不平稳,此时称存在单位根。把模型是否平稳的检验称为单位根检验。9.3 自回自回归模型的平模型
7、的平稳性和相关函数性和相关函数9.3.1 自回归模型的平稳性例子9.1 为平稳时间序列 为非平稳时间序列 9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数 对 阶自回归模型:且 为白噪声序列 若 为平稳时间序列,则 两边取期望,得 代入原模型,整理可得零均值化的 阶自回归模型:9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数 重新将记为 ,即用 表示原模型中的 。此时,。后面的自回归模型都将采用这种零均值化后的模型。9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相
8、关函数AR(1)模型的自相关函数 用 表示变量的方差 得出 表示 与 的协方差 9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(1)模型的自相关函数 同理,则AR(1)的自相关函数为 。9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数u结论2:AR(1)模型的自相关函数(ACF)为 平稳性要求 ,当 时,即自相关系数随时间间隔增加指数递减到0,但不等于0。这种现象称为自回归模型自相关函数的拖尾性。9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数例子9.
9、29.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(2)模型的自相关函数 当 时9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(2)模型的自相关函数 由上式可解得 9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(2)模型的自相关函数u结论2:AR(2)模型的自相关函数(ACF)为 下面一行等式称为尤勒-沃尔克方程(Yule-Walker equations)。9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的
10、自相关函数AR(2)模型的自相关函数例子 9.39.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(2)模型的偏自相关函数 称 为 阶自回归模型的偏自相关系数(PAC:Partial Auto-Correlation)9.3 自回自回归模型的平模型的平稳性和相关函数性和相关函数9.3.2 自回归模型的自相关函数AR(2)模型的偏自相关函数 AR(k)模型的偏相关函数为u 阶数大于 时,偏自相关系数为0,这种现象称为AR模型偏相关函数的截尾性。u偏自相关系数 是剔除 对 的影响后,和 的相关系数。9.4自回自回归模型的定模型的定阶和估和估计9.4.
11、1 自回归模型定阶9.4.2 自回归模型估计9.4.3 自回归模型再定阶信息准则9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回归模型定阶自回归模型的确立:确定阶数 估计 再次确定阶数的循环自相关函数用来确定采用自回归模型是否合适。如果自相关函数具有拖尾性,则AR模型为合适模型。偏自相关函数用来确定模型的阶数。如果从某个阶数之后,偏自相关函数的值都很接近0,则取相应的阶数作为模型阶数。9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回归模型定阶例子9.3 库存投资模型定阶 打开包含库存投资变量Invent的工作文件,在主菜单中点击Quick Series Statisti
12、cs Correlogram9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回归模型定阶例子9.3 库存投资模型定阶 在出现的对话框中输入序列(变量)名称,点击OK按钮,弹出的对话框(Correlogram Specification)中有对原数据(level),一阶差分后的数据(1st difference),二阶差分后的数据(2nd difference)的选择,以及自回归包含多少滞后项(Lags to include)。9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回归模型定阶例子9.3 库存投资模型定阶 9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回
13、归模型定阶例子9.3 库存投资模型定阶 点击OK后,将显示结果9.4自回自回归模型的定模型的定阶和估和估计9.4.1 自回归模型定阶例子9.3 库存投资模型定阶 看自相关(Autocorrelation),发现有拖尾性,故可以选择自回归模型,看偏自相关(Partial Correlation),发现有截尾现象:高于四阶的偏自相关均为0,故可以建立4阶自回归模型AR(4)。9.4自回自回归模型的定模型的定阶和估和估计9.4.2 自回归模型估计自回归模型估计最小二乘估计 AR(k)模型仍为线性模型,且误差项 满足基本第4章的假设1假设4,故得出的估计仍然就有一致性和马尔科夫性。当样本量较大时,采用
14、滞后变量导致的回归样本减少对估计精度的影响不大。自回归模型估计极大似然估计 假设误差项服从正态分布,可以用极大似然估计。故自回归模型估计极大似然估计 对数似然函数为 其最大化得出的估计与最小二乘估计一致。自回归模型估计 EViews操作 第一种方法:点击主菜单的Quick Estimate Equation,若按一般线性回归模型进行设定,则输入 自回归模型估计 EViews操作 输出结果自回归模型估计EViews操作 若按自回归模型进行设定,则输入注意:估计AR(4)时要将AR(1)到AR(4)全部写出。自回归模型估计 EViews操作 输出结果自回归模型估计EViews操作 上述两种估计方法
15、仅截距项的估计不一样,原因是前者采用普通最小二乘法,后者采用约束最小二乘法。在用EViews估计时间序列模型时,应采用第二种设定方法。自回归模型估计EViews操作 第二种方法:采用向量自回归VAR估计方法。点击主菜单的QuickEstimate VAR,点选VAR Type中的Unrestricted VAR,在Endogenous Variables栏中输入变量名invent,在Lag Intervals for Endogenous栏中输入1 2 3 4,在Exogenous Variables栏输入c:自回归模型估计EViews操作 自回归模型估计EViews操作 输出结果与普通最小二
16、乘法一致自回归模型估计脉冲响应函数 脉冲响应是指 处新息 的变化对后续 的影响。平稳AR模型可以转换为无穷阶的移动平均模型,设转换后的MA模型为 的脉冲响应函数(IRF:impulse response function)定义为:自回归模型估计脉冲响应函数 例子9.3(续)库存投资模型脉冲响应 分析 首先用VAR估计法估计AR模型,在输出结果界面,点击ViewImpulse Response,弹出对话框自回归模型估计脉冲响应函数 例子9.3(续)库存投资模型脉冲响应 分析 点选Display Format下的Combined Graph,在Impulse和Response中均填入invent,
17、在Periods(最大滞后期)中输入数字,点击确定输出结果如右:9.4自回自回归模型的定模型的定阶和估和估计9.4.3 自回归模型的再定阶信息准则 前面自回归模型的定阶是通过计算样本的自相关函数和偏自相关函数得出的,存在一定的偏差。信息准则也可以被用来确定阶数,常用的有赤池信息准则(Aikaike info Criterion)AIC和施瓦兹信息准则(Schwarz info Criterion)SC,最优阶数使得信息准则值最小。9.4自回自回归模型的定模型的定阶和估和估计9.4.3 自回归模型的再定阶信息准则 例子9.4 信息准则定阶 分别计算AR(1)到AR(5)的信息准则值,然后再比较,
18、选出使得信息准则值最小的阶数AIC:-6.003716、-6.061554、-6.069740、-6.047398、-6.032800SC:-5.864837、-5.893780、-5.872679、-5.820648、-5.775950故AIC建议选择3阶滞后,SC建议选择2阶滞后。9.5 自回自回归分布滞后模型分布滞后模型9.5.1 自回归分布滞后模型9.5.2 格兰杰因果关系检验9.5 自回自回归分布滞后模型分布滞后模型9.5.1 自回归分布滞后模型 ARDL(AutoRegression Distribution Lag)适应性预期模型(消费与收入的关系)9.5 自回自回归分布滞后模型
19、分布滞后模型9.5.1 自回归分布滞后模型 ARDL(AutoRegression Distribution Lag)部分调整模型(宏观经济变量)9.5 自回自回归分布滞后模型分布滞后模型9.5.1 自回归分布滞后模型例子9.5 货币需求 弗里德曼货币需求函数:取对数,货币需求部分调整 货币需求的时间序列模型9.5 自回自回归分布滞后模型分布滞后模型9.5.2.格兰杰因果关系检验 检验变量之间领先关系的方法:如果序列 的信息 对 有显著解释能力,表明变量 是 的原因,这种关系称为格兰杰因果关系。检验 (没有格兰杰因果关系)9.5 自回自回归分布滞后模型分布滞后模型9.5.2.格兰杰因果关系检验
20、例子9.6 石油与经济 表示价格变化,为国民生产总值变化的百分比。9.5 自回自回归分布滞后模型分布滞后模型9.5.2.格兰杰因果关系检验例子9.6 石油与经济 在Eviews中将两个变量打开(Openas Group),在数据表格界面点击ViewGranger Causality,在弹出对话框Lag Specification中输入需要加入的滞后阶数。9.5 自回自回归分布滞后模型分布滞后模型9.5.2.格兰杰因果关系检验例子9.6 石油与经济 输出结果 格兰杰因果只是统计意义上的因果关系9.6 ARCH模型模型9.6.1 ARCH模型的定义9.6.2 ARCH模型估计9.6 ARCH模型模
21、型9.6.1 ARCH模型的定义 股票价格 随机游走,从而股票收益为白噪声,之间没有关系,但 之间则可能存在关系,能为资产定价提供信息。9.6 ARCH模型模型9.6.1 ARCH模型的定义定义1(ARCH模型):设时间序列 满足 阶自回归模型,误差项序列 为白噪声。如果误差项平方形成的序列 服从 阶自回归模型,称时间序列 为带 误差项的自回归模型,表示为 其中 和 为相互独立的白噪声序列。上式中第一个方程为均值方程,第二个方程称为方差方程或者波动方程。9.6 ARCH模型模型9.6.1 ARCH模型的定义 上述定义中中均值和方差模型也可写作:若序列 的前后相关性持续时间太长(方差聚集效应),
22、则需要选取较大的 ,而GARCH 模型 也能描述持续的相关性,因此通常使用GARCH(1,1)来描述条件方差的行为。9.6 ARCH模型模型9.6.1 ARCH模型的定义 ARCH-m模型(风险溢价)方差还可以以 或 的形式引入 9.6 ARCH模型模型9.6.2 ARCH模型估计 不可观测,故只能用极大似然估计9.6 ARCH模型模型9.6.2 ARCH模型估计 给出初值 和 ,即可以估计参数。初值 和 可以采用如下两种方法得到:(1)用OLS方法估计均值模型,回归残差作为对初值的估计 (2)回代法 ,为平滑参数,通常取 。误差项的分布还可以选择t-分布或者GED分布。9.6 ARCH模型模
23、型9.6.2 ARCH模型估计例子9.6 沪深300指数(日收益率建模)打开包含日收益率的EViews文件,Quick Estimation equation,在Estimation settings的 Methods中选择ARCH-Autoregressive Conditional Heteroskedasticity,弹出对话框9.6 ARCH模型模型9.6.2 ARCH模型估计例子9.6 沪深300指数(日收益率建模)均值模型设定,此处为白噪声是否在均值模型中加入波动率为解释变量选择GARCH的类型GARCH的具体回归阶数误差项的分布假设对估计方法的细节设定9.6 ARCH模型模型9.
24、6.2 ARCH模型估计对含移动平均项的均值模型进行设定设定回代法 的值9.6 ARCH模型模型9.6.2 ARCH模型估计 例子9.7 系数重要概念重要概念1.时间序列分析的重点,是建立合适的模型刻画不同时间点上随机变量的相关性。常用的时间序列模型有自回归模型和移动平均模型,平稳的自回归模型可以转化为无穷阶的移动平均模型。时间序列的相关性,用自相关系数和偏自相关系数表示。2.平稳性是时间序列的数学期望、方差和协方差不随时间变化。自回归模型描述的时间序列的平稳性,可以用模型的滞后多项式根来判断。如果滞后多项式的根都落在单位圆外,则时间序列平稳。3.阶数的自回归模型的自相关函数和偏自相关函数具有
25、不同的性质,据此可以判断对给定的样本数据,多少阶的自回归模型是合适的。4.自回归模型的估计可以采用OLS估计和极大似然估计,两种方法得出的自回归系数估计相同。自回归模型的估计和定阶是交替进行的。除了采用自相关函数和偏自相关函数初步确定阶数之外,还可以采用信息准则确定模型阶数。重要概念重要概念5.为了研究两个时间序列之间的关系,在自回归模型自变量中引入另一个时间序列变量及其滞后项,形成自回归分布滞后模型。适应性预期模型和部分调整模型,是自回归分布滞后模型在经济理论中的应用。对自回归分布滞后模型进行参数约束检验,可以对经济时间序列之间的领先关系进行格兰杰因果关系检验。6.用自回归模型对时间序列的条件方差进行建模,与均值模型一起形成带ARCH误差项的模型。GARCH模型不仅能充分刻画条件方差相关性,还具有更为简洁的形式。GARCH(1,1)模型应用最为广泛,其一般形式为 GARCH模型采用极大似然估计方法进行估计,为保证方差的非负性和方差模型的平稳性,需要对模型系数施加复杂的约束。