《高数微分方程.ppt》由会员分享,可在线阅读,更多相关《高数微分方程.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一阶线性微分方程 第四节一、一阶线性微分方程一、一阶线性微分方程二、伯努利方程二、伯努利方程 第十二章第十二章 一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式一阶线性微分方程标准形式:若若 Q(x)0,若若 Q(x)0,称为称为非齐次方程非齐次方程.1.解齐次方程解齐次方程分离变量分离变量两边积分得两边积分得故通解为故通解为称为称为齐次方程齐次方程;对应齐次方程通解对应齐次方程通解齐次方程通解齐次方程通解非齐次方程特解非齐次方程特解2.解非齐次方程解非齐次方程用用常数变易法常数变易法:则则故原方程的通解故原方程的通解即即即即作变换作变换两端积分得两端积分得(一阶线性方程)(一
2、阶线性方程)二、伯努利二、伯努利(Bernoulli)方程方程 伯努利方程的标准形式伯努利方程的标准形式:令令求出此方程通解后求出此方程通解后,除方程两边除方程两边,得得换回原变量即得伯努利方程的通解换回原变量即得伯努利方程的通解.解法解法:(线性方程线性方程)例例6.求方程求方程的通解的通解.解解:令令则方程变形为则方程变形为其通解为其通解为将将代入代入,得原方程通解得原方程通解:内容小结内容小结1.一阶线性方程一阶线性方程方法方法1 先解齐次方程先解齐次方程,再用常数变易法再用常数变易法.方法方法2 用通解公式用通解公式化为线性方程求解化为线性方程求解.2.伯努利方程伯努利方程思考与练习思
3、考与练习判别下列方程类型判别下列方程类型:提示提示:可分离可分离 变量方程变量方程齐次方程齐次方程线性方程线性方程线性方程线性方程伯努利伯努利方程方程备用题备用题1.求一连续可导函数求一连续可导函数使其满足下列方程使其满足下列方程:提示提示:令令则有则有利用公式可求出利用公式可求出2.设有微分方程设有微分方程其中其中试求此方程满足初始条件试求此方程满足初始条件的连续解的连续解.解解:1)先解定解问题先解定解问题利用通解公式利用通解公式,得得利用利用得得故有故有2)再解定解问题再解定解问题此齐次线性方程的通解为此齐次线性方程的通解为利用衔接条件得利用衔接条件得因此有因此有3)原问题的解为原问题的解为