《关于彩票问题的数学模型.pdf》由会员分享,可在线阅读,更多相关《关于彩票问题的数学模型.pdf(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 全国一等奖全国一等奖 关于彩票问题的数学模型关于彩票问题的数学模型 (电子科技大学)(电子科技大学)指导教师:张勇指导教师:张勇 参赛队员:付小锋 参赛队员:付小锋 丘允阳 丘允阳 胡俊东胡俊东 2002.9.23 关于彩票问题的数学模型关于彩票问题的数学模型 摘要:摘要:本文对彩票问题从数学的角度进行了分析研究,对 29 种常见方案的合理性进行了综合评价,设计了两种“更好”的方案。首先,计算出各类型彩票各奖项的中奖概率。将中奖面和一等奖单注奖金的期望值作为方案合理性的评价指标,建立了一双目标优化模型。考虑到中奖面和一等奖单注奖金的期望值处于不同的数量级,对它们进行了规一化处理,然后引入非负
2、加权因子,从而将双目标优化模型转化为单目标优化模型进行求解。考虑到不同的彩民对中奖面和一等奖单注奖金期望值的偏好程度不同,给出了适合于不同彩民的合理方案。我们分别设计了面向“保值型”彩民的“22 选 5”方案和面向“激进型”彩民的双彩池摇奖方案,给出了相应的算法并对其可行性进行了分析。对彩票管理部门提出了设“积宝池”、使用调节基金、采用“二次开奖”和“附加奖”等建议。最后,对模型进行了分析和评价,提出了模型的改进方向。并给报纸写了一篇关于合理选择彩票问题的文章。1关于彩票问题的数学模型关于彩票问题的数学模型 一、问题的提出:一、问题的提出:巨额诱惑使越来越多的人加入到“彩民”的行列,目前流行的
3、彩票主要有“传统型”和“乐透型”两种类型。“传统型”采用“10 选 6+1”方案,根据单注号码与中奖号码相符的个数多少及顺序确定中奖等级(具体摇奖规则及中奖等级说明见附件一附件一);“乐透型”有多种不同的形式,分为“m 选 n”型方案和“m 选 n+1”型方案,根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺序(具体摇奖规则及中奖等级的说明见附件二附件二)。已知这两种类型彩票的总奖金比例一般为销售总额的 50%,投注者单注金额为 2元,单注若已得到高级别的奖就不再兼得低级别的奖。现在常见的销售规则及相应的奖金设置方案如附表三附表三,其中一、二、三等奖为高项奖,后面的为低项奖
4、。低项奖数额固定,高项奖按比例分配,但一等奖单注保底金额 60 万元,封顶金额 500 万元,各高项奖额的计算方法为:(当期销售总额 总奖金比例)-低项奖总额 单项奖比例 (1)根据这些方案的具体情况,综合分析各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素评价各方案的合理性。(2)设计一种“更好”的方案及相应的算法,并据此给彩票管理部门提出建议。(3)给报纸写一篇短文,供彩民参考。二、问题分析:二、问题分析:问题的第一问要求对 29 种彩票方案进行综合分析并评价各方案的合理性,考虑彩票发行人的获利情况和彩票方案对彩民的吸引力两个方面因素,分析彩票方案合理性。一套方案对彩民的吸
5、引力越大,则它的销售总额也就越大;在销售规则不变的前提下,发行人的获利就越多。因此,方案对彩民的吸引力是影响彩票方案合理性的主要因素。要评价方案的合理性关键在于确立关于方案合理性的评价指标。根据“不确定条件下消费者选择理论”,中奖率低但中奖额高是影响吸引力的主要因素。因此可以考虑将彩票的中奖面和高等奖单注奖金的期望值作为评价指标,来衡量各方案的合理性。由于一等奖占高等奖奖金的 60%以上,可以考虑用一等奖单注期望值代替高等奖单注奖金期望值作为评价指标,这并不影响对方案合理性的分析。由于一等奖单注奖金的期望值和中奖面之间又存在相互制约的关系,可以考虑建立双目标优化模型对问题进行研究。不同类型的彩
6、民对两者的偏好程度不一样,高风险倾向彩民主要偏向于一等奖单注奖金的期望值,低风险倾向彩民主要偏向于中奖面。根据实际情况,可以引进偏好系数,考虑在不同偏好系数下,适合该类型彩民的合理性方案。三、基本假设:三、基本假设:1)彩票的摇奖过程是公正的,即能够保证基本号和特别号的产生是随机的。2)单注彩票若已得到高级别的奖就不再兼得低级别的奖。3)各类型彩票的总奖金比例为其当期销售总额的 50%。4)一等奖单注保底金额 60 万元,封顶金额 500 万元。5)当期未中出的浮动奖奖金,或者超出头等奖单注封顶限额部分的奖金,考虑自动滚动到下一期一等奖,直至中奖。6)不考虑中奖弃领的情况。27)只讨论“传统型
7、”和“乐透型”两种类型。8)方案中没有设置奖金的奖项的中奖概率计为零。四、变量说明:四、变量说明:1)k:销售方案中设置的最低奖项的等级。2)PBiB(i=1,2,k):第i等奖出现的概率。3)qBiB(i=4,5,k):低项奖中第i等奖对应的固定奖金额。4)tBiB(i=1,2,3):高项奖中第i等奖对应的分配比例。5)N:当期彩票的总投注数(单位:注)。6)Z:一等奖奖金的期望值。7)P:彩票的中奖面。8)m:摇奖时的号码球总数。(单位:个)9)n:基本号码球个数。(单位:个)10)P:29 种方案中奖面的平均值。11)PP*P:P与P的比值。12)Z:29 种方案一等奖单注奖金的平均期望
8、值。13)ZP*P:Z与Z的比值。14):彩民对中奖面的偏好系数。15):彩民对一等奖的偏好系数。五、模型的建立和求解:五、模型的建立和求解:(一)建模前的准备:(一)建模前的准备:1、对彩票各奖项的中奖概率的讨论:对彩票各奖项的中奖概率的讨论:通过对彩票的各种方案进行分析,发现彩票共可分为“传统型”、“乐透型”中的“从 m 中选 n”和“从 m 中选 n+1”型。为此,我们对这三种类型彩票各奖项的中奖概率分别进行讨论:1)“传统型”彩票各奖项的中奖概率(以一注为单位,计算每一注彩票的中奖概率):一等奖:前 6 位数有 10P6P种可能,,特别号码有 5 种可能,共有 10P6P5=50000
9、00 种选择,而一等奖号码只有一个。因此,一注中一等奖的概率为:P B1B=1/5000000=210P-7P=0.0000002 二等奖:前 6 位数相同的,只有一种可能,故中二等奖的概率为:B2B=1/1000000=10P-6P=0.000001;三等奖:有 18 个号码可以选择,故中三等奖的概率为:B3B=18/1000000=0.000018;四等奖:有 252 个号码可以选择,故中四等奖的概率为:B4B=252/1000000=0.000252;五等奖:有 3420 个号码可以选择,故中五等奖的概率为:B5B=3420/1000000=0.00342;六等奖:由于其特殊性,考虑如下
10、:3 不考虑号的重复:abXXXX是六等奖号,所以不能是abXdef型,就有 910P3P-9 个号 同理:XXXXef也有 910P3P-9 个号 其他类型号不存在这种情况,都有 9P2P10P3P个号 所以总的不重复的号有:42282 个号 考虑重复的号的个数:分析可发现重复号的类型有:abXcdX,XbcXef,abXXef,这三种类型每种有 81 个号,所以重复的号的个数为:243 个 总的中奖号数目:42282-243=42039 故中六等奖的概率为:B6B=42039/1000000=0.042039。合起来,每一注总的中奖率为:=B1B+B2 B+B3B+B4B+B5B+PB6B
11、=0.0457302 4.6%,这就是说,每 1000 注彩票,约有 46 注中奖(包括一等奖到六等奖)。2)“乐透型”中“从 m 中选 n”型彩票各奖项的中奖概率(以一注为单位,计算每一注彩票的中奖概率):此类型彩票开奖时从 m 个号码球中随机抽取 n+1 个号码球,前 n 个为基本号,第 n+1 个为特别号码。从排列组合的知识可以得出,从 m 个数码中随机抽取 n 个数码组成一个中奖数组,而且与这 n 个数码的顺序无关,所以这是一个组合问题。因此,从 m个数码中随机抽取 n 个数码的组合数是nmC。一等奖:一等奖号码只有一个。因此,一注中一等奖的概率为:B1B=1nmC;二等奖:二等奖(n
12、-1 个基本号码加一个特别数码)的组合数为1nnC。三等奖:三等奖(n-1 个基本号码)的组合数为111nnm nCC。四等奖:四等奖(n-2 个基本号码加一个特别数码)的组合数为211nnm nCC。五等奖:五等奖(n-2 个基本号码)的组合数为221nnm nCC。六等奖:六等奖(n-3 个基本号码加一个特别数码)的组合数为321nnm nCC。七等奖:七等奖(n-3 个基本号码)的组合数为331nnm nCC。故“乐透型”中“从 m 中选 n”型彩票各奖项的中奖概率为:1=1nmC;B2 B=1nnnmCC;B3B=111nnm nnmCCC;B4B=211nnm nnmCCC;B5B=
13、221nnm nnmCCC;B6B=321nnm nnmCCC;PB7B=331nnm nnmCCC。43)“乐透型”中“从 m 中选 n+1”型彩票各奖项的中奖概率(以一注为单位,计算每一注彩票的中奖概率):采取类似于 2)的分析方法,可以求出“从 m 中选 n+1”型彩票各奖项的中奖概率为:B1B=11nmC+;B2 B=111m nnmCC+;B3B=1111nnm nnmCCC+;B4B=1211nnm nnmCCC+;B5B=2211nnm nnmCCC+;B6B=2311nnm nnmCCC+;PB7B=3311nnm nnmCCC+。4)第 23 种方案:此方案属于“35 选 7
14、”的特殊“乐透型”,但是此方案中没有设置特别号码。各奖项中奖概率如下计算:第 i 等奖中奖概率为:711728735iiCCC+(i=1,25)。具体所提供的 29 种方案各奖项的中奖概率(即各种奖项出现的可能性)见附表四附表四(各奖项的中奖概率分布表)。2、对各方案影响因素的讨论:对各方案影响因素的讨论:彩票的方案是否合理受到多种因素的共同影响,我们考虑将中奖面和一等奖单注奖金的期望值作为评价的两个指标,对各方案的合理性进行评价。中奖面越广,一等奖单注奖金的期望值越高,对彩民的吸引力也就越大。对彩民吸引力增大,必然导致彩票销售总额的增加,从而方案也就越合理。下面对各目标函数分别进行讨论:1)
15、彩票的中奖面彩票的中奖面 P:中奖面为中奖的彩票总数与该期彩票的总投注数的比值。彩票中奖面的大小与彩民的直接利益息息相关,如果中奖面广,单注的中奖概率就增大,对于彩民来说他购买彩票能够中奖的机率也就增加。因此,中奖面是衡量方案合理性的重要因素之一。在此,我们用各获奖项的概率之和作为彩票中奖面大小的衡量指标,即:中奖面1kiiPP=(i=1,2,k);(PBiB为第i等奖出现的概率)2)一等奖单注奖金的期望值一等奖单注奖金的期望值 Z:通过对彩票业的良好现状及大量的资料进行分析,发现彩票的“巨额诱惑”是导致“彩民”数急剧增大,彩票业蓬勃发展的重要因素之一。也就是说当前大多数彩民对一等奖的关注程度
16、远远超过了对其他奖项的关注程度,一等奖单注奖金的期望值的高低决定着对彩民的吸引力的大小。因此,一等奖单注奖金的期望值也是衡量方案合理性的重要因素之一。一等奖单注奖金的期望值 Z 为:Z=1411(2)2kiiiNNPqtNP=141(1)kiiiPqtP=5(变量说明:变量说明:N为当期彩票的总投注数;PBiB(i=1,2,k)为第i等奖出现的概率;qBiB(i=4,5,k)为低项奖中第i等奖对应的固定奖金额;tB1B 方案中一等奖对应的分配比例。)、对各约束条件的讨论:、对各约束条件的讨论:方案对彩民的吸引力主要与高项奖和低项奖的设置有关。设置高额巨奖的目的是激发人们的博彩心理,刺激他们去购
17、买彩票。因此高项奖的奖金额必须足够高才能对彩民有足够的吸引力。设置中、低等奖的目的主要是满足多数人的心理需求。人们的中奖心理具有递进性,中了中、低等奖之后,往往会唤起拿到高等奖的信心与渴望。若中奖面太窄,则会使彩民受挫,打击彩民购买彩票的信心。另外,一、二、三等奖金的比例必须适当,要使每期发下去的奖金尽可能的多,即在奖池中不能长期的驻留奖金,否则也会打击彩民的信心。因为级差太小不能体现各奖项之间的等级差别,而级差太大会打击彩民的信心,所以由以上分析得到以下 3 个约束条件:(1)高项奖的单注奖金比低项奖的单注奖金高。高项奖的单注奖金比低项奖的单注奖金高。博彩的游戏规则是单注中奖期望值与其概率成
18、反比。我们称之为准则一;由于中奖概率随奖项等级的提高而单调递减,根据准则一有约束条件:ZB1BZB2BZB3BqB4 因为单注第i等奖期望:ZBiB=4(1)kiiiiiPqtP=(=i (2)各项奖金的期望值的级差在一定的范围内。各项奖金的期望值的级差在一定的范围内。即满足:axZBiB/ZBiB=c (c为一常数)(3)一等奖单注奖金的期望应该在一等奖单注奖金的期望应该在 60 万元到万元到 500 万元之间。万元之间。即满足:141(1)60500kiiiPqtP=(二)问题一模型的建立和求解:(二)问题一模型的建立和求解:、通过以上建模前准备中对方案评价影响因素的分析,为了对各方案的合
19、理性进行评价,可以建立关于 P、Z 值的双目标优化模型如下:61141max(1)maxkiikiiiPPPqtZP=约束条件为:s.t.1413124123431(1)60500(1)1kiiikiiiiiPqtPtttqPPPPqt=该双目标规划模型表示中奖面越广,一等奖单注奖金的期望值越高,该方案也就越合理。、求解模型:、求解模型:变量说明:变量说明:P:29 种方案中奖面的平均值。PP*P:P与P的比值。Z:29 种方案一等奖单注奖金的平均期望值。ZP*P:Z与Z的比值。:彩民对中奖面的偏好系数。:彩民对一等奖的偏好系数。W:方案合理性的衡量指标。1)对)对 P、Z 进行规一化处理:进
20、行规一化处理:我们分别求出这 29 种方案的 P、Z 值(见附表五),从表中可以发现它们的差异很大,分别处于不同的数量级。所以不能直接引入非负加权因子,将此双目标规划模型转化为单目标规划模型进行考虑。因此,我们考虑对 P、Z 进行规范化处理,将它们统一到相同的数量级范围。进行规范化处理的具体步骤如下(我们以对 P 的处理为例进行说明):将这 29 种方案的 P 值进行加权求和,再算出它们的平均值。即求得129PP=。7 求出每一种方案的P值与P的比值PP*P,即求得PP*P=PP。所求出的PP*P即为经过规一化处理后的P值。按照相同的方法对一等奖单注奖金的期望值Z进行规一化处理,求得*ZZZ=
21、,经过处理后的PP*P、ZP*P即处于相同的数量级范围。(求出的PP*P、ZP*P见附表六)。2)引入两个非负加权因子1,2,将此双目标规划模型转化为单目标规划模型,即:*2max=PZ+1W 约束条件为 s.t.1413124123431(1)60500(1)1kiiikiiiiiPqtPtttqPPPPqt=非负因子1,2为多目标的权重系数,分别代表彩民对中奖面和一等奖单注奖金的期望值的偏好程度。该单目标规划模型表示在1,2一定的情况下,方案合理性的衡量指标 W 的值越大,则该方案在该情况下也就越合理。我们取三组权重系数,分别为:(1)0.5,0.5;(2)0.2,0.8;(3)0.8,0
22、.2;根据权重系数的不同,可以分别求出 29 种方案在该权重系数下的目标函数值(见附表七)。、求解结果:、求解结果:1)权重系数为0.2,0.8 时:(29 种方案在该权重系数下的目标函数值如下表 A):序号 目标函数值 序号 目标函数值 序号 目标函数值 序号 目标函数值 1 0.3966 9 0.6256 17 0.4884 25 0.5038 2 0.5854 10 0.417 18 0.5745 26 0.5644 3 0.6111 11 0.5518 19 0.5287 27 0.4383 4 0.6369 12 0.4502 20 0.5124 28 0.6538 5 0.4346
23、 13 0.4826 21 0.4956 29 0.4448 86 0.4459 14 0.515 22 0.6321 7 0.4982 15 0.4856 23 0.8838 8 0.5706 16 0.5852 24 0.5016 (表 A:0.2,0.8 时各方案的目标函数值)该类型彩民为“激进型”彩民,根据表 A 中各目标函数值的分布,我们可以得到适合于该类型彩民的较为合理的方案,依次为(同类型的只提供一种选择,此处只提供前五种):23,28,4,9,16,18。2)权重系数为0.8,0.2 时:该类型彩民为“保值型”彩民。按照类似于 1)的分析方法对目标函数值进行分析,得到适合于该类
24、型彩民的较为合理的方案,依次为(同类型的只提供一种选择,此处只提供前五种):4,23,9,10,16。3)权重系数为0.5,0.5 时:该类型彩民为界于“激进型”和“保值型”之间的彩民。按照类似于 1)的分析方法对目标函数值进行分析,得到适合于该类型彩民的较为合理的方案,依次为(同类型的只提供一种选择,此处只提供前五种):23,26,4,25,9。(三)“更好”的方案的设计及相应的算法:(三)“更好”的方案的设计及相应的算法:根据以上对彩票问题的研究,结合实际情况,我们设计了分别适合于“保值型”和“激进型”彩民的更为合理的方案。1、面向“保值型”彩民:、面向“保值型”彩民:“保值型”彩民即为低
25、风险型彩民,因此对于面向“保值型”彩民的方案,应当考虑降低一等奖中奖难度,使每期均有一等奖中出,从而形成中奖效应,提高对彩民的吸引力并调动彩民的积极性。随着大奖中奖概率的提高,单注奖金会因此而减少。考虑彩民心理承受能力和奖金设置对彩民的吸引力,单注一等奖的单注奖金最好不要低于 1 万元,一等奖的中奖概率宜取 0.000010.00002。为保证彩民的利益和方案的可行性,可以考虑采用“封顶”和“保底”并且将奖金大部分集中到头奖的方案。面对“保值型”彩民的方案和算法:面对“保值型”彩民的方案和算法:方案选择:22 选 5 中奖规则:选 5 中 5 为一等奖;选 5 中 4 为二等奖;其他奖项依次类
26、推。(无特别号且不考虑号码顺序)。销售方案:总奖金占销售总额的 50%,单注金额不变,单注若已得到高级别奖就不再兼得低级别奖。低项奖金固定,高项奖金浮动,一等奖单注保底一万,封顶金额 500 万。奖金设置:只设置一、二等奖。二等奖固定奖金 50 元,其余归一等奖。方案的可行性分析:方案的可行性分析:1、一等奖中奖概率为 1/65780,即 0.000015,为 30 选 7 的 30 多倍,36 选 7 的 125倍。特别适合于低风险倾向的“保值型”彩民。92、中奖面为 1.6%,相对来说可以让大部分彩民接受的。3、单注一等奖奖金保底 10000,封顶金额 5000000,使得彩民心理能接受并
27、保证发行部门的利益。4、一般每期均有中一等奖的情况,这容易形成中奖效应,从而提高彩票发行量 5、可推广应用于人口基数较小或经济较不发达地区。6、由于没有调节基金,可能使某期总奖金超过销售总额的 50%。7、可根据一等奖中奖概率的高低选择底数的大小 、面向“激进型”彩民:、面向“激进型”彩民:当方案设计面向高风险倾向彩民或者当预期总投注额很大时,例如某地区存在相当数量的高风险倾向彩民或者准备在全国范围内统一销售的情况,这时要求单注头奖奖金足够大。针对这种背景,根据预计总投注数的具体情况,我们提出了改进性超级乐透彩方案:方案规则的设定方案规则的设定:采用 m 选 n+1 的模式;并改采用“双彩池摇
28、奖”的方式。具体规则为:n 个正选号码从总球数为 m 个的彩池中一个一个摇出基本号,再从另一个总球数为 m 个的彩池中摇出一个特别号码。根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑基本号码的顺序。根据预计总投注数 N 的大小,确定 m 的大小(n 一般取 5)。设置奖项为:n 个基本号码和一个特别号码全部相符时为一等奖。现在拟取 m 为,n 为;.易得此时中一等奖的概率为/;中奖者奖成为“亿元”富翁。中一等奖期望人数中一等奖的概率*投注总数。故对亿人口的我国国情,在市场比较成熟的条件下,可在全国推行该方案。3、给彩票管理部门的建议:给彩票管理部门的建议:(1)对人口基数较小或
29、经济较不发达地区采取“22 选 5”方案,对高风险倾向彩民数量较多的地区或全国范围内统一销售的情况采取高难度的方案。(2)考虑到在实际中可能会出现一等奖多期未中的情况及对于为补足 60 万单注保底奖金的那部分差款的处理。我们对彩票管理部门提出以下建议:设“积宝池”的方法,即当期一等奖未中,或者单注一等奖封顶后超出的部分,或者前期弃奖奖金自动滚入下期一等奖。并考虑从每期 50%返回奖金中拿出 1%来当调节基金,这样就可以很好的解决差款的问题。对于一二三等奖及固定奖之间单注奖比例可能出现的处理。可以通过修改规则,使用调节基金来解决。例如当期高等奖单注奖额在未达到封顶额但低于其下一等奖金额时,应保证
30、高等奖的实际金额高于其下一等奖单注奖金的一倍,资金来源由调节基金来调节。或者采用增设附加号(特别号)来调节奖级间的比例。当一等奖中奖概率过低时,可能出现多期一等奖未中,而奖池里驻留奖金过多的情况,在不改变方案的前提下,这时彩票管理部门可考虑采用“二次开奖”和“附加奖”的办法。若这种现象长期出现,则应考虑修改方案,提高一等奖中奖概率,从而形成发行者和彩民的双赢局面。每一种方案根据其中奖率和中奖面的不同而有适应其的特定顾客群。一般根据中头奖概率的高低将方案分为高、中、低难度。偏好高回报的彩民一般会选用难度较高的方案。故发行新形式的彩票时,应考虑当地彩民的偏好。六、模型分析:六、模型分析:1.模型结
31、果的重述:模型结果的重述:(在不同权重下的较合理方案)101)权重系数为0.2,0.8(“激进型”彩民)时合理方案序号:23,28,4,9,16,18。2)权重系数为0.8,0.2(“保值型”彩民)时合理方案序号:4,23,9,10,16。3)权重系数为0.5,0.5(“中间型”彩民)时合理方案序号:23,26,4,25,9。2.模型的分析模型的分析 1)在不同的偏好系数下,方案 4,23,9 都体现出比较好的稳定性。其主要原因是这些方案同时具备有比较大的中奖面和比较高的一等奖单注期望值。2)在同一偏好系数下,模型能较合理的衡量评价方案的合理性。以第一组数据为例:0510152025300.3
32、0.40.50.60.70.80.91 (上图为综合指标分布图)由综合指标分布图可以得到这样的结论:在偏好系数比例为 8:2 时,即对高风险倾向的彩民,方案 23 显著优于其他方案。2,3,4 方案比 5,6 方案合理。这与实际是相符合的。因为方案 23 的单注一等奖奖金期望值超过 5000000,而方案 5,6 一等奖单注中奖额仅为 750000 元,为方案 4 2250000 的 1/3 倍。故模型能显著的反映在某种偏好系数下,适合该类型彩民的方案的合理性。反而言之,可以推算出不同方案适合哪种类型的彩民,从而给彩票管理部门提供有价值的参考。让他们根据当地彩民的实际情况,针对不同类型彩民采用
33、不同的方案,使其效益最高。.七、模型的评价和改进:七、模型的评价和改进:a)我们通过一些合理的假设,针对彩票方案合理话问题建立了一般模型。模型采用规范化将多指标转综合成单目标优化模型。对 29 个销售规则进行了很好的合理性分析,根据彩民对中奖率的偏好和对高项奖的偏好,给出了一个合理性排列,使彩民可以根据自己的喜好来选择最适合自己的彩票。11b)对于 29 个销售规则合理性分析的基础上,我们给出了寻找一种更好的方案的思想,并且给出了一种更好的方案。c)模型是建立在一定的假设条件下,具有一定的实际推广意义。d)模型没有考虑滚动彩池的方案,其合理性指标值有一定的偏差。模型改进可以考虑在保证头奖奖金足
34、够吸引人,中奖面可以让彩民接受的前提下,调节各等级奖项之间的比例,使方案尽可能的公平、合理。八、参考文献:八、参考文献:1 欧阳卫民 闵路浩 彩票理论与实践 中国金融出版社,1996 2 严峰 韩玉芬 彩票指南 北京 中国人民大学出版社,1993 3 姜启源 数学模型 M.北京 高等教育出版社,1993 4 王福保 概率论与数理统计 上海 同济大学出版社,1994 5 中国科学院数学研究所运筹室 最优化方法 北京,1980 九、附件清单:九、附件清单:1.给报社的短文:合理选择彩票类型。给报社的短文:合理选择彩票类型。2.附件一(传统型摇奖规则及中奖等级)3.附件二(乐透型摇奖规则及中奖等级)
35、4.附表三(销售规则及相应的奖金设置方案)5.附表四(各奖项的中奖概率)6.附表五(P、Z 值表)7.附表六(PP*P、ZP*P值)8.附表七(不同权重下的 W 值)12附附 件件 1、给报社的一篇短文:1、给报社的一篇短文:合理选择彩票类型 合理选择彩票类型 彩票的中奖号码是由一定范围内的几个自然数,任意组合而成的。通过对现有的各类型彩票方案进行研究,我们可以根据头奖中奖概率将彩票分为“低难度”、“中等难度”和“高难度”三种类型。一般情况“低难度”产生“万元户”,“中等难度”产生“百万富翁”,“高难度”产生“千万富豪”。风险和回报是成正比的,低风险低回报,高风险高回报。因此,彩民在购买彩票时
36、必须根据自己的偏好和所能够承担风险的大小购买适合自己的彩票。对于“保值型”即“保守型”的彩民,最好选择低、中难度的彩票类型进行投注。(比如可考虑选择购买“传统型”彩票和“乐透型”中的“22 选 5”型彩票)。这两种类型的彩票中奖面相对来说都比较大,也就是说彩民购买彩票后能够中奖的机会比较高。但这种类型彩票的高项奖奖金一般都不会太高。对于那些追求高额奖金的人,可以考虑购买高难度型彩票(比如“乐透型”中的“36 选 7”型彩票和“六合彩”)。高难度型彩票的特点是高项奖特别是头奖的奖金比较可观,但风险比较高。比如,现在流行的“六合彩”采取“40 选 6”方案,其头奖金额可高达几百万甚至更高,但它的中
37、奖面仅为 0.5%,即 1000 注彩票中只有 5 注能够中奖。所以彩民在投高难度型彩票之前,除了看到其奖金可观外还必须清楚高难度型彩票的高风险性,要确定自己能够承担足够大的风险。当然,要对彩票进行合理的投资,彩民还应具有分散投资的意识。即将资金分散开来投资,购买不同的彩票,使得各种彩票所带来的平均风险最小,而所得到的平均收益最大。132、附件一(传统型摇奖规则及中奖等级):附件一(传统型摇奖规则及中奖等级):“传统型”采用“10 选 6+1”方案:先从 6 组 09 号球中摇出 6 个基本号码,每组摇出一个,然后从 04 号球中摇出一个特别号码,构成中奖号码。投注者从 09 十个号码中任选
38、6 个基本号码(可重复),从 04 中选一个特别号码,构成一注,根据单注号码与中奖号码相符的个数多少及顺序确定中奖等级。以中奖号码“abcdef+g”为例说明中奖等级,如下表一(X 表示未选中的号码)。表一 10 选 6+1(6+1/10)中 奖 等 级 基 本 号 码 特别号码 说 明 一等奖 abcdef g 选 7 中(6+1)二等奖 abcdef 选 7 中(6)三等奖 abcdeX Xbcdef 选 7 中(5)四等奖 abcdXX XbcdeX XXcdef 选 7 中(4)五等奖 abcXXX XbcdXX XXcdeX XXXdef 选 7 中(3)六等奖 abXXXX Xbc
39、XXX XXcdXX XXXdeX XXXXef 选 7 中(2)3、附件二(乐透型摇奖规则及中奖等级):3、附件二(乐透型摇奖规则及中奖等级):“乐透型”有多种不同的形式,比如“33 选 7”的方案:先从 0133 个号码球中一个一个地摇出 7 个基本号,再从剩余的 26 个号码球中摇出一个特别号码。投注者从0133 个号码中任选 7 个组成一注(不可重复),根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺序。又如“36 选 6+1”的方案,先从 0136个号码球中一个一个地摇出 6 个基本号,再从剩下的 30 个号码球中摇出一个特别号码。从 0136 个号码中任选 7
40、个组成一注(不可重复),根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺序。这两种方案的中奖等级如表二。表二 注:为选中的基本号码;为选中的特别号码;为未选中的号码。4、附表三(销售规则及相应的奖金设置方案):附表三(销售规则及相应的奖金设置方案):33 选 7(7/33)36 选 6+1(6+1/36)中 奖 等 级 基 本 号 码 特别号码 说 明 基 本 号 码 特别号码 说 明 一等奖 选 7 中(7)选 7 中(6+1)二等奖 选 7 中(6+1)选 7 中(6)三等奖 选 7 中(6)选 7 中(5+1)四等奖 选 7 中(5+1)选 7 中(5)五等奖 选 7
41、 中(5)选 7 中(4+1)六等奖 选 7 中(4+1)选 7 中(4)七等奖 选 7 中(4)选 7 中(3+1)14序号 奖项 方案 一等奖 比 例 二等奖比 例三等奖比 例四等奖金 额五等奖金 额六等奖 金 额 七等奖 金 额 备 注 1 6+1/10 50%20%30%50 按序 2 6+1/10 60%20%20%300 20 5 按序 3 6+1/10 65%15%20%300 20 5 按序 4 6+1/10 70%15%15%300 20 5 按序 5 7/29 60%20%20%300 30 5 6 6+1/29 60%25%15%200 20 5 7 7/30 65%15
42、%20%500 50 15 5 8 7/30 70%10%20%200 50 10 5 9 7/30 75%10%15%200 30 10 5 10 7/31 60%15%25%500 50 20 10 11 7/31 75%10%15%320 30 5 12 7/32 65%15%20%500 50 10 13 7/32 70%10%20%500 50 10 14 7/32 75%10%15%500 50 10 15 7/33 70%10%20%600 60 6 16 7/33 75%10%15%500 50 10 5 17 7/34 65%15%20%500 30 6 18 7/34 68
43、%12%20%500 50 10 2 19 7/35 70%15%15%300 50 5 20 7/35 70%10%20%500 100 30 5 21 7/35 75%10%15%1000 100 50 5 22 7/35 80%10%10%200 50 20 5 23 7/35 100%2000 20 4 2 无特别号24 6+1/36 75%10%15%500 100 10 5 25 6+1/36 80%10%10%500 100 10 26 7/36 70%10%20%500 50 10 5 27 7/37 70%15%15%1500 100 50 28 6/40 82%10%8%2
44、00 10 1 29 5/60 60%20%20%300 30 5、附表四(各奖项的中奖概率):附表四(各奖项的中奖概率):序号 一等奖 二等奖 三等奖 四等奖 五等奖六等奖 七等奖 1 0.0000002 0.000001 0.0000180.0002520 0 0 2 0.0000002 0.000001 0.0000180.0002520.003420.0423 0 3 0.0000002 0.000001 0.0000180.0002520.003420.0423 0 4 0.0000002 0.000001 0.0000180.0002520.003420.0423 0 5 0.00
45、000064 0.000004480.0000940.0002830.002830.0047 0 6 0.00000064 0.000014 0.0000850.0008880.002220.0148 0 7 0.00000049 0.000003440.0000760.0002270.002380.004 0.0265 158 0.00000049 0.000003440.0000760.0002270.002380.004 0.02659 0.00000049 0.000003440.0000760.0002270.002380.004 0.026510 0.00000038 0.0000
46、02660.0000610.0001840.002020.00337 0.023611 0.00000038 0.000002660.0000610.0001840.002020.00337 0 12 0.000000297 0.000002080.000050.0001500.001720.00287 0 13 0.000000297 0.000002080.000050.0001500.001720.00287 0 14 0.000000297 0.000002080.000050.0001500.001720.00287 0 15 0.000000234 0.000001640.0000
47、410.0001230.001470.00246 0 16 0.000000234 0.000001640.0000410.0001230.001470.00246 0.018817 0.000000186 0.00000130.0000340.0001010.001270.00211 0 18 0.000000186 0.00000130.0000340.0001010.001270.00211 0.016919 0.000000149 0.000001040.0000280.000080.00110.0018 0 20 0.000000149 0.000001040.0000280.000
48、080.00110.0018 0.015221 0.000000149 0.000001040.0000280.000080.00110.0018 0.015222 0.000000149 0.000001040.0000280.000080.00110.0018 0.015223 0.000000149 0.000029150.001120.017050.0213 24 0.00000012 0.000003470.0000210.000290.000730.0066 0.008825 0.00000012 0.000003470.0000210.000290.000730.0066 0 2
49、6 0.00000012 0.000000840.0000230.000070.000950.00158 0.013727 0.000000097 0.000000680.000020.000060.000830.00138 0 28 0.00000026 0.000001560.0000520.0001290.002060.00275 0 29 0.000000183 0.000000920.0000490.0000990.002620 0 6、附表五(附表五(P、Z 值表):值表):序号 P 值 Z 值 序号 P 值 Z 值 1 0.00027 2468500 16 0.0229 2392
50、300 2 0.046 1933500 17 0.0035 3382400 3 0.046 2094625 18 0.0204 3351200 4 0.046 2255750 19 0.003 3978500 5 0.0079 756280 20 0.0182 3285900 6 0.018 660000 21 0.0182 3025500 7 0.0332 762760 22 0.0182 3838300 8 0.0332 947290 23 0.0395 5426174 9 0.0332 1087800 24 0.0164 4480000 10 0.0292 795160 25 0.007