《第四章控制系统的根轨迹分析法.ppt》由会员分享,可在线阅读,更多相关《第四章控制系统的根轨迹分析法.ppt(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、相角条件:ss在 s 左边的零、极点其相角均为0在 s 右边的零、极点其相角均为共轭复根相角为2在实轴上的 s 是否满足相角条件就看 s 右边的零、极点之和是否是奇数在实轴上的 s 是否满足相角条件就看 s 右边的零、极点之和是否是奇数在实轴上的 s 是否满足相角条件就看 s 右边的零、极点之和是否是奇数奇数出射角公式:出射角公式:出射角公式:出射角公式:第四章第四章 控制系统的根轨迹分析法控制系统的根轨迹分析法 根轨迹分析法是一种图解分析法,利用它求解根轨迹分析法是一种图解分析法,利用它求解高阶系统中某一参数对系统性能的影响将非常方便。高阶系统中某一参数对系统性能的影响将非常方便。4.1 4
2、.1 根轨迹的基本概念及分析方法根轨迹的基本概念及分析方法4.2 4.2 绘制根轨迹的基本规则绘制根轨迹的基本规则4.4 4.4 系统性能的根轨迹分析系统性能的根轨迹分析4.3 4.3 参量根轨迹参量根轨迹广义根轨迹广义根轨迹4.1 4.1 根轨迹的基本概念及分析方法根轨迹的基本概念及分析方法 系统开环中某一参数从系统开环中某一参数从00时,闭环系统特征时,闭环系统特征根在根在 S S 平面上的位置也随之变化移动,一个根形成平面上的位置也随之变化移动,一个根形成一条轨迹。一条轨迹。例例 求系统特征方程求系统特征方程的根随开环增益的根随开环增益K K的的变化在变化在S S平面上的位平面上的位置变
3、化情况,并分析置变化情况,并分析K K对系统的影响。对系统的影响。RY系系统统的的闭环传递闭环传递函数函数 闭环闭环特征方程式特征方程式 特征方程的根特征方程的根 S2+2S+KC(s)R(s)=KS2+2S+K=0S1.2=-1 1-K 0 -1 2 Kr S1 S2 0 -2 1 -1 -1+j -1-j -1+j -1-j-1 S2j0-1-21 S1 K K 解解以以K为参数求根迹为参数求根迹K K变化时变化时,闭环特征根闭环特征根在在S S平面上的轨迹图形平面上的轨迹图形当当K从从0连续变化时连续变化时,得到无数组得到无数组特征方程的特征方程的根根,组成图形组成图形系统特征方程为系统
4、特征方程为求得两个极点:求得两个极点:ImRe0-2当当K=0K=0时:时:s s1 1=0=0,s s2 2=-2=-2当当K=1K=1时:时:s s1,21,2=-1=-1K K在在0101之间连续变化之间连续变化则则 s s1 1 和和 s s2 2 也连续变也连续变化,并且互相靠近。化,并且互相靠近。-1ss s s当当K1时:时:s s 的实部为常数,其虚部的实部为常数,其虚部随着随着KK是连续变化的,是连续变化的,并且上下分开。并且上下分开。该根迹表达如下信息:该根迹表达如下信息:无论无论 K K 如何变化,闭如何变化,闭环极点只可能出现在环极点只可能出现在 S S平面的平面的左左
5、半平面,系统半平面,系统始终始终稳定稳定。在在0 0K K1 1区间:区间:s s1,21,2是实数极点,所是实数极点,所以阶跃响应是单调收敛以阶跃响应是单调收敛的。的。由于由于s s1 1离虚轴最近,离虚轴最近,所以它主导系统的响应,所以它主导系统的响应,当当K K s s1 1远离虚轴,系远离虚轴,系统响应过程变快。统响应过程变快。在在1 1K K区间:区间:s s1,21,2是一对共轭复根,实是一对共轭复根,实部为常数,决定了系统的调部为常数,决定了系统的调节时间;节时间;虚部随着虚部随着K K增大增大而而增大增大%;画出画出 =0.707=0.707 的等阻尼线,的等阻尼线,找出根迹与
6、该线的交点,可找出根迹与该线的交点,可得相应的得相应的 s s 最佳值最佳值。根轨迹法的分析基本思路根轨迹法的分析基本思路:方法方法:根据开环零极点的分布绘制出系统根据开环零极点的分布绘制出系统的根轨迹图;的根轨迹图;利用根轨迹法来分析和设利用根轨迹法来分析和设计系统计系统.目的目的:解决高阶系统求解特征根比较困难的解决高阶系统求解特征根比较困难的实现实现;寻找到一种方便、有效的描述系寻找到一种方便、有效的描述系统的根轨迹的方法。统的根轨迹的方法。4.2 4.2 绘制根轨迹的基本规则绘制根轨迹的基本规则一、根轨迹的幅值条件和相角条件一、根轨迹的幅值条件和相角条件RY系统的特征:系统的特征:1+
7、G(s)H(s)=0G(s)H(s)=-1幅值条件幅值条件:相角条件相角条件:在在S S平面上满足特征方程的平面上满足特征方程的 s s 一定满足幅、相条件;一定满足幅、相条件;同理满足幅、相条件的同理满足幅、相条件的 s s一定满足特征方程。一定满足特征方程。利用利用开开环环求求解解闭闭环环设系统的开环传递函数为设系统的开环传递函数为开环开环零零点点开环极点根轨迹增益将GH中最高阶相的系数化为1提出的常数闭环特征方程幅值条件幅值条件幅幅值条件值条件相角条件相角条件相相角条件角条件相相角条件是根轨迹的角条件是根轨迹的充分充分必要条件;必要条件;幅幅值条件只有在求值条件只有在求Kg参数时才使用参
8、数时才使用。闭闭环环极极点点这是什么?这是什么?8、开环极点与闭环极点的关系、开环极点与闭环极点的关系7、根轨迹与虚轴的交点、根轨迹与虚轴的交点 6、根轨迹的出射角和入射角、根轨迹的出射角和入射角 4、根轨迹的分离点和会合点、根轨迹的分离点和会合点5、根轨迹的渐近线、根轨迹的渐近线3、实轴上的根轨迹段、实轴上的根轨迹段2、根轨迹的起点和终点、根轨迹的起点和终点1、根轨迹的对称性和分布性、根轨迹的对称性和分布性二、绘制根轨迹的基本规则二、绘制根轨迹的基本规则1、根轨迹的对称性和分布性、根轨迹的对称性和分布性1)根轨迹对称于实轴)根轨迹对称于实轴 闭环闭环特征方程特征方程实实数根数根分布分布在在S
9、 平面的平面的实轴实轴上。上。复数根复数根则则成成对对出出现现,实实部相等,虚部大小相等符部相等,虚部大小相等符号相反。号相反。根根轨轨迹迹必定必定对对称于称于实轴实轴。j0S1 S2 S3 S4 S5 S6 2)n阶阶系系统统有有n条根条根轨轨迹迹 Kr取某一数取某一数值时值时,n阶特阶特征方程有征方程有n个确定的根。个确定的根。Kr=0每一个根由始点每一个根由始点连续连续地向其地向其终终点移点移动动,形,形成一条根成一条根轨轨迹,迹,n个根形个根形成成n条根条根轨轨迹。迹。起始于开环极点,终止于开环零点和无穷零点。起始于开环极点,终止于开环零点和无穷零点。2、根轨迹的起点和终点、根轨迹的起
10、点和终点起点:起点:Kg=0 时时闭环特征方程闭环特征方程 S=pi闭环极点闭环极点=开环极点开环极点终点:终点:Kg=时时 S=zjm m个闭环极点个闭环极点=开环开环零零点点 S=(n-m)(n-m)个闭环极点个闭环极点=无穷无穷零点零点 p3=-2 p2=-1 例例 已知系统的开环传递函数,试确定已知系统的开环传递函数,试确定 系统的根轨迹图。系统的根轨迹图。解:解:系统的三条根轨迹系统的三条根轨迹起始于三个开环传递函起始于三个开环传递函数的极点。数的极点。开环零、极点:开环零、极点:p1=0 z1=-1+j z2=-1-js(s+1)(s+2)Kr(s2+2s+2)G(s)H(s)=两
11、条根轨迹终止于开两条根轨迹终止于开环传递函数的两个零点,环传递函数的两个零点,另一条趋于无穷远。另一条趋于无穷远。j1-1-1-20p1 p2 p3z1 z2 3、实轴上的根轨迹、实轴上的根轨迹 实轴上某区间存在根轨迹,则实轴上某区间存在根轨迹,则该区间右边的开环零、极点数之和该区间右边的开环零、极点数之和必为奇数。必为奇数。ImReImRe0-14、分离点与会合点、分离点与会合点两条两条或两条或两条以上的根轨以上的根轨迹在迹在S平面上平面上相遇相遇又立即又立即分开分开的点。的点。重重根根点点在实轴上两个开环极点之在实轴上两个开环极点之间如果是根轨迹,必有分间如果是根轨迹,必有分离点;两个开环
12、零点之间离点;两个开环零点之间是根轨迹,必有会合点。是根轨迹,必有会合点。分离点分离点求解求解特征方程特征方程 的的重根重根。RY例例已知已知代入求K例例 试确定系统分离点。试确定系统分离点。s(s+1)(s+2)KrG(s)H(s)=解:解:根轨迹的分离点:根轨迹的分离点:A(s)B(s)=A(s)B(s)(3S2+6S+2)=0s1=-0.43s2=-1.57s2没有位于根轨迹上,舍去。没有位于根轨迹上,舍去。600j0p1 p3p2-1-25、根轨迹的渐近线、根轨迹的渐近线 与实轴交点:与实轴交点:与实轴交角:与实轴交角:当当 n nm m 时,有时,有 m m 条根轨迹终止于开环的条根
13、轨迹终止于开环的有限零点,而有限零点,而 n-m n-m 条条根轨迹将根轨迹将沿沿着与实轴交点着与实轴交点为为 a a 、交角为交角为 的一组渐进的一组渐进线线终止于无终止于无穷远处(穷远处(无穷零点无穷零点)。)。ImRe0-1RY例 在实轴上两开环极点之间是在实轴上两开环极点之间是根轨迹,所以有分离点。根轨迹,所以有分离点。系统开环为系统开环为可得例例 已知系统的开环传递函数,试确定已知系统的开环传递函数,试确定 系统的根轨迹图。系统的根轨迹图。解:解:s(s+1)(s+2)KrG(s)H(s)=1)开环零、极点:)开环零、极点:2)实轴上的根轨迹段:)实轴上的根轨迹段:p1=0p2=-2
14、p3=-3p1p2p3-83)根轨迹的渐近线:)根轨迹的渐近线:渐渐近近线线与与实轴实轴的交点的交点:渐近线与实轴的夹角渐近线与实轴的夹角:n-m=33=-1-2=-1 3(2k+1)+=+180O+60O=,4)系)系统统的根的根轨轨迹迹 600j0p1 p3p2-1-2例例 试确定系统分离点。试确定系统分离点。s(s+1)(s+2)KrG(s)H(s)=解:解:前例已求得根轨迹的渐近线前例已求得根轨迹的渐近线和实轴上的根轨迹段和实轴上的根轨迹段 根轨迹的分离点:根轨迹的分离点:A(s)B(s)=A(s)B(s)(3S2+6S+2)=0s1=-0.43s2=-1.57s2没有位于根轨迹上,舍
15、去。没有位于根轨迹上,舍去。600j0p1 p3p2-1-2例例 已知系统的开环传递函数,试确定已知系统的开环传递函数,试确定 系统的根轨迹图。系统的根轨迹图。解:解:,(s+1)(s+2)Kr(s+3)G(s)H(s)=1)开环零、极点)开环零、极点 2)实轴上的根轨迹段)实轴上的根轨迹段 p1p2z1-8p2=-2p1=-1z1=-3 3)根)根轨轨迹的迹的渐渐近近线线 有一条根有一条根轨轨迹迹趋趋于无于无穷远穷远n-m=1渐近线与实轴的夹角:渐近线与实轴的夹角:1(2k+1)+=+180O=4)分离点和会合点)分离点和会合点KrB(s)+A(s)=0A(s)=S2+3S+2B(s)=S+
16、3B(s)=1A(s)=2S+3整理得整理得 (S2+3S+2)=(2S+3)(S+3)S2+6S+27=0 解方程得解方程得 s1=-1.6s2=-4.4根根轨轨迹的分离点迹的分离点根根轨轨迹的会合点迹的会合点5).根轨迹根轨迹 j0p1 z1p2-1-2-36)根轨迹与虚轴的根轨迹与虚轴的交点交点交点交点 例例 已知系统开环已知系统开环 解解 已知与虚轴交点处已知与虚轴交点处求与求与虚轴交点虚轴交点系统特征方程为系统特征方程为代入代入虚部虚部为零为零实部为零实部为零解得:解得:也也可以用劳斯表求交点可以用劳斯表求交点7 7)根轨迹的)根轨迹的出射角出射角和和入射角入射角出射角公式:出射角公
17、式:所有开环有限所有开环有限零零点点到该点矢量的相角到该点矢量的相角除起点外开环除起点外开环极极点点到该点矢量的相角到该点矢量的相角入射角公式:入射角公式:8 8)闭环特征方程)闭环特征方程根之和根之和与与根之积根之积a a)(n-m)(n-m)2 2时,时,根之和根之和与根轨迹增益与根轨迹增益 K Kg g 无关无关,是,是个常数,即个常数,即b b)根之和不变根之和不变 K Kg g 增大,一些根轨迹分支向增大,一些根轨迹分支向左左移动,移动,则一定会相应有另外一些根轨迹分支向则一定会相应有另外一些根轨迹分支向右右移动。移动。闭闭环极点环极点开开环极点环极点闭环极点与特征方程的系数关系闭环
18、极点与特征方程的系数关系(n-m2)=常数常数 例例11已知系统开环已知系统开环试试绘制闭环系统的概略根轨迹绘制闭环系统的概略根轨迹解解 已知开环已知开环在在-1,0和和-,-2区间有根轨迹。区间有根轨迹。实轴上两个开环极点之实轴上两个开环极点之间有根轨迹,必有分离点间有根轨迹,必有分离点得得(不合理)不合理)渐近线渐近线虚轴交点虚轴交点将将 s=j 代入特征方程代入特征方程例例2已知系统的开环传递函数已知系统的开环传递函数试试绘制闭环系统的概略根轨迹绘制闭环系统的概略根轨迹解解 由由开环传递函数知开环传递函数知将将零、极点标在图上零、极点标在图上实轴上实轴上-3,0有根轨迹有根轨迹求求分离点
19、分离点求导求导试探法,得试探法,得代入得代入得求求渐近线渐近线n-m=4 有四条渐近线求与虚轴交点求与虚轴交点代入特征方程代入特征方程画出根轨迹画出根轨迹幅幅值条件值条件相相角条件角条件模值方程与相角方程的应用模值方程与相角方程的应用所有开环所有开环零零点到点到闭环闭环 s 的距离的距离所有开环所有开环极极点到点到闭环闭环 s 的距离的距离所有开环所有开环零零点指向点指向闭环闭环 s 的相角的相角所有开环所有开环极极点指向点指向闭环闭环 s 的相角的相角S1=1.5+j1.2553幅幅k*=0.2643.826相相39.91.82668.35.576147.91.82613.82621.826
20、111.7160.3164.4k*=0.266180.3o4.3 参量根轨迹广义根轨迹 初根轨迹初根轨迹 Kg 以外,系统其它参数变化时的根以外,系统其它参数变化时的根轨迹称为参量根轨迹轨迹称为参量根轨迹(或广义根轨迹)。(或广义根轨迹)。1.开环开环零零点变化的根轨迹点变化的根轨迹 设设系统开环传递函数为系统开环传递函数为没有附加开环零点情况没有附加开环零点情况相当于相当于设置设置设置设置零点在零点在 2 左左边时根边时根轨迹与虚轴有交点,轨迹与虚轴有交点,在在右右边时,根轨迹与边时,根轨迹与虚轴没有交点。虚轴没有交点。设置设置在在虚虚轴轴的的左左边边配配置置适适当当的的零零点点2.开环开环
21、极极点变化的根轨迹点变化的根轨迹 设设系统开环传递函数为系统开环传递函数为没有配置极点没有配置极点配置极点配置极点配置极点配置极点配置极点配置极点配配置置在在虚虚轴轴左左边边的的极极点点要要远远离离虚虚轴轴RYRYRY闭环传递函数分母一样,所以闭环传递函数分母一样,所以极点极点是是一样一样的。的。A系统开环具有零点,系统开环具有零点,闭环也闭环也有有零点并且相同。零点并且相同。B系统开环具有零点,但闭环系统开环具有零点,但闭环没没有零点。有零点。AB但是不是都具有闭环零点!但是不是都具有闭环零点!控制器控制器被控对象被控对象测量装置测量装置指令指令被控参数被控参数4.4 系统性能的根轨迹分析练习练习画出概略根轨迹画出概略根轨迹(a)(b)(c)(d)作业:作业:4-3