《2016年《南方新课堂·高考总复习》数学(理科)-第六章-第5讲-不等式的应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《2016年《南方新课堂·高考总复习》数学(理科)-第六章-第5讲-不等式的应用ppt课件.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第 5 讲 不等式的应用在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确1会用基本不等式解决简单的最大(小)值问题2会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确1如果 a,bR,那么 a2b2_(当且仅当 ab 时取“”号)2ab在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,
2、由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确B 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2(2013 年陕西)若点(x,y)位于曲线 y|x|与 y2 所围成)A的封闭区域,则 2xy 的最小值为(A6B2C0D2解析:如图D20,将点(2,2)代入2xy,得最小值为6.图 D20在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确3建造一个容积为 8 m3,深为 2 m 的长方
3、体无盖水池,如果池底和池壁的造价每平方米分别为 180 元和 80 元,那么水池的最低总造价为_元4一批货物随 17 列货车从 A 市以 v 千米/时匀速直达 B 市,已知两地路线长 400 千米,为了安全,两辆货车间距至少不得(不计货车长度)20008在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点 1 利用不等式进行优化设计例 1:出版社出版某一读物,一页上所印文字占去 150 cm2,上、下边要留 1.5 cm 空白,左、右两侧要留 1 cm 空白,出版商为降低成本,应选用怎样尺寸的纸张?在整堂课的教学中,刘教师总是让学生带
4、着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【规律方法】利用不等式解决实际问题时,首先要认真审题,分析题意,建立合理的不等式模型,最后通过基本不等式解题注意最常用的两种题型:积一定,和最小;和一定,积最大在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】1某村计划建造一个室内面积为 800 m2 的矩形蔬菜温室在温室内,沿左、右两侧与后侧内墙各保留 1 m 宽的通道,沿前侧内墙保留 3 m
5、宽的空地,则最大的种植面积是()DA218 m2B388 m2C468 m2D648 m2在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点 2 利用规划进行优化设计例 2:某人有楼房一幢,室内面积共计 180 m2,拟分隔成两类房间作为旅游客房大房间每间面积为 18 m2,可住游客 5名,每名游客每天住宿费 40 元;小房间每间面积为 15 m2,可住游客 3 名,每名游客每天住宿费为 50 元;装修大房间每间需要 1000 元,装修小房间每间需要 600 元如果他只能筹款 8000元用于装修,且游客能住满客房,他隔出大房间和小房
6、间各多少间,能获得最大收益?在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【规律方法】利用线性规划研究实际问题的基本步骤是:应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.用图解法求得数学模型的解,即画出可行域,在可行域内求使目标函数取得最值的解.根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况
7、求得最优解.,本题完全利用图象,对作图的准确性和精确度要求很高,在现实中很难做到,为了得到准确的答案,建议求出所有边界的交点,再代入检验.当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】2某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B 原料 3 吨,销售每吨甲产品可获得利润 5 万元,每吨乙产品可获得利润 3 万元该企业在一个生产周期内消耗 A 原料
8、不超过 13 吨,B 原料不超过 18 吨,那么该企业可获得的最大利润是()A12 万元C25 万元B20 万元D27 万元在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确答案:D在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点 3 利用基本不等式处理实际问题例 3:某养殖场需定期购买饲料,已知该养殖场每天需要饲料 200 公斤,每公斤饲料的价格为 1.8 元,饲料的保管与其他费用为平均每公斤每天 0.03 元,购买饲料每次支付运费 300 元(1)求该养殖场多少天购买一
9、次饲料才能使平均每天支付的总费用最小;(2)若提供饲料的公司规定,当一次购买饲料不少于 5 吨时,其价格可享受八五折优惠(即原价的 85%)问该养殖场是否考虑利用此优惠条件,请说明理由在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】3(2013 年广东广州一模)某辆汽车购买时的费用是 15 万元,每年使用的保险
10、费、路桥费、汽油费等约为 1.5 万元,年维修保养费用第一年为 3000 元,以后逐年递增 3000 元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是()A8 年D12 年B10 年D15 年在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确答案:B在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确易错、易混、易漏利用基本不等式时忽略了等号成立的条件例题:某造纸厂拟建一座平面图形为矩形且面积为 162 平方米的三级污水处理池,池的深度一定(平面图如图 6-5-1),
11、如果池四周围墙建造单价为 400 元/米,中间两道隔墙建造单价为248 元/米,池底建造单价为 80 元/米2,水池所有墙的厚度忽略不计图 6-5-1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过 16 米,试设计污水池的长和宽,使总造价最低,并求出最低总造价在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确值,首先考虑利用均值不等式,利用均值不等式时要注意等号成立的条件及题目的限制条件;如果均值不等式中等号不能成立,则考虑利用“对勾”函数的单调性在区间(0,a上单调递减,在区间a,)上单调递增或者利用导数求最值.