《金属零件激光增材制造技术及其应用.docx》由会员分享,可在线阅读,更多相关《金属零件激光增材制造技术及其应用.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、金属零件激光增材制造技术及其应用内容来源网络,由“深圳机械展(11万血,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铳磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数 字化无人工厂、精密测量、3D打印、激光切割、锁金冲压折弯、精密零件加工等展示,就 在深圳机械展.传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铳削等机械工艺方 式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造 通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但 总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明
2、显优于传统减材技术。激光增材制造技术是一种基于离散/堆积成形思想的新型制造技术,是集成计算机、数控、 激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿 一定方向离散成一系列有序的二维层片根据每层轮廓信息进行工艺规划选择加工参数, 自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接 起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工, 大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。 该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动, 设计制造高
3、度T本化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一 种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化 金属粉末,直接制造出任意复杂形状的零件。其主要方法有:1、激光直接沉积增材制造技该技术可追溯到20世纪70年代末期的激光多层熔覆研究,但直到20世纪90年代,国 内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件 的几何形状和力学性能等基础性问题开展大量的研究工作。激光直接沉积技术为航空航天大型整体钛合金结构制造提供一种短周期、高柔性、低成本手 段
4、。为了提高结构效率、减轻结构重量、简化制造工艺,国内外飞行器越来越多地采用了大 型整体钛合金结构。与锻压-机械加工传统制造技术相比,激光直接沉积增材制造技术具有 以下特点:无需零件毛坯制备,无需锻压模具加工,无需大型或超大型锻铸工业基础设施及 相关配套设施;材料利用率高,机加工量小,数控机加工时间短;生产制造周期短;工序少, 工艺简单,具有高度的柔性与快速反应能力;采用该技术还可根据零件不同部位的工作条件 与特殊性能要求实现梯度材料高性能金属零件的直接制造。激光直接沉积技术还可以为航空航天、工模具等领域高附加值金属零部件的修复提供一种高 性能、高柔性技术。由于工作环境恶劣,飞机结构件、发动机零
5、部件、金属模具等高附加值 零部件往往因磨损、高温气体冲刷烧蚀、高低周疲劳、外力破坏等因素导致局部破坏而失效。 另外,零件制造过程中误加工损伤是其被迫失效的另一重要原因。若这些零部件被迫报废, 将使制造厂方蒙受巨大的经济损失。与传统热源修复技术相比,激光直接沉积技术因激光的 能量可控性、位置可达性高等特点逐渐成为其关键修复技术。2、激光选区熔化增材制造技术激光选区熔化技术是由德国Frauhofer研究所于1995年提出,在金属粉末选择性烧结基础 上发展起来的。2002年该研究所在激光选区熔化技术方面取得巨大成就,可一次性地直接 制造出完全致密性的零件。随着高亮度光纤激光的出现,国外金属粉末选区熔
6、化激光精密增材成形技术发展突飞猛进。 譬如,德国EOS GmbH公司新开发的激光选区熔化设备EOSINT M280采用束源质量高 的Yb光纤激光器,将激光束光斑直径聚焦到lOOkim ,大幅提高激光扫描的速度,减少成 形时间,其成形零件性能与锻件相当。激光选区熔化技术可直接制成终端金属产品,省掉中间过渡环节,零件具有很高的尺寸精度 以及好的表面粗糙度(Ra为1030pm );适合各种复杂形状的工件,尤其适合内部有复 杂异型结构、用传统方法无法制造的复杂工件;适合单件和小批量复杂结构件无模、快速响 应制造。2009年以来,中航工业北京航空制造工程研究所通过与国际著名激光粉末烧结设 备制造商德国E
7、OS公司的技术交流,自主开发建立激光选区熔化增材制造技术平台, 研制出一些典型金属结构件,其TC4钛合金力学性能与锻件相当,但仍受到层片扫描轨迹 优化设计、应力及变形协调控制等基础问题制约。激光增材制造其实质就是CAD软件驱动下的激光三维熔覆过程。所以其不仅可实现激光熔 覆制备耐磨涂层和功能梯度材料,而且可修复高附加值的金属件和直接制造任意复杂结构的 金属零部件。随着其成形工艺和装备不断地成熟和提高,成形材料从钛合金、镁基合金、不 锈钢、钻铭合金等成熟材料种类,不断推出新材料。通过拓扑优化设计结构,激光选区熔化 技术可制造出大幅减轻重量的航空航天金属结构件。目前,金属零件激光增材技术面临的主 要挑战包括成形过程应力及变形、材料组织及性能控制、质量检测及标准建立等。产品创新是我国制造行业可持续发展的基础,而金属零件的激光快速成形技术对新产品的开 发速度和重要零部件的再制造将起到十分重要作用。金属零件激光增材制造技术开创了一个 崭新的设计、制造概念。它以相对低的成本、高速造型、可修改性强的特点,独特的工艺过 程,为提高产品的设计质量、降低成本、缩短设计及制造周期,为将产品尽快推向市场提供 了有效的方法,尤其适合于形状复杂的零件。内容来源网络,由深圳机械展收集整理!更多激光皈金及冲压自动化工艺展示,就在深圳机械展.金属板材加工展区/激光精密加工应 用展区。