《2023年椭圆的标准方程教学设计.docx》由会员分享,可在线阅读,更多相关《2023年椭圆的标准方程教学设计.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年椭圆的标准方程教学设计 篇1:椭圆的标准方程教学设计 椭圆的标准方程教学设计桑宏德 椭圆的标准方程教学设计 篇2:椭圆及其标准方程教学设计 椭圆及其标准方程教学设计 青铜峡市高级中学 二六年十月 课题 椭圆及其标准方程 一学情分析 学生在必修中学过圆锥曲线之一,圆。掌握了圆的定义及圆的标准方程的推导,学生可以用类比的方法来研究中一种圆锥曲线椭圆。 二、教学目标 知识技能: 1掌握随圆的定义,掌握椭圆标准方程的两种形式及其推导过程 2能根据条件确定椭圆的标准方程,掌握运用定义法,待定系统法求随圆的标准方程。 过程方法: 1通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。 2通过
2、对椭圆标准方程的推导,是学生进一步掌握求曲线方程的一般方法,并渗透数结合和等价转化的思想方法,提高运用坐标解决几何问题的能力,情感态度和价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。 三、教学重点,难点分析 重点:椭圆的定义及椭圆标准方程的两种形式。 难点:椭圆标准方程的建立和推导。 关键:掌握建立坐标系统与根式化简的方法。 椭圆及其标准方程这一节教材整体来看是两大块内容,一是椭圆定义,二是椭圆的标准方程,椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中,先要学习的内容,所以教材把对椭圆的研究放在了重点,对双曲线和抛物线的教学中巩固和应用,
3、先讲椭圆也与圆的知识衔接自然,学好椭圆对学生学习圆锥曲线是非常重要的。 四、教法建议 1安排学生提前预习,动手切割圆锥形的事物,使学习了解圆锥曲线名称的来历及圆锥曲线的样子。 2对椭圆定义的引入,要注重于借助直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,进而形成正确的概念。 3将课本提出的问题分解成若干小问题,通过学生、教师动手演示,来体现椭圆定义的实质。 4注意椭圆的定义与椭圆的标准方程的联系。 5推导椭圆的标准方程时,教师要注重化解难点,实施的补充根式化简方法。 6讲解完焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程。然后,鼓励学生探索椭圆
4、的两种标准方程的异同点,进一步加深对椭圆的认识。 7在学习新知识的基础上要巩固旧知识。 8要突出教师的指导作用,又要强调学生的主体作用,课堂上尽量让全体学生参与讨论。由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生团结协作的团队精神。 五、课前准备 1、每人准备一根细绳、一卷胶带。 2、圆锥曲线模型。 六、教学基本流程 七、教学过程设计 篇3:椭圆的定义与标准方程(公开课)教案 2.1.1椭圆的定义与标准方程 宁德二中 高二(1)班 马茂鸿 2023.11.26 一、教材分析 圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常 生活、生产和科学技术中都有着广泛的应用。本节是
5、 的第一节课,主要学习椭圆的定义和标准方程。它是本章也是整个解析 几何部分的重要基础知识。 第一,在教材结构上,本节内容起到一个承上启下的重要作用。前 面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法 的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的 一种有效方法。 第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了 函数与方程、数与形结合的重要思想。而这种思想,将贯穿于整个高中 阶段的数学学习。 第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加 强了运算能力,提高了他们提出问题、分析问
6、题、解决问题的能力,为 后续知识的学习奠定了基础。 二、学生情况分析 1.在学习本节内容以前,学生已经学习了直线和圆的方程,初步了 解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠 定了基础。 2.在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简 对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时加 以点拨指导。 三、教学目标 1.通过观察、实验、证明等方法的运用,让学生更好的理解椭圆 的定义,掌握椭圆标准方程的两种形式,会根据条件求椭圆的标准方程。 1 2.通过对椭圆的认识及其方程的推导,培养学生
7、的分析、探究、抽象、概括等逻辑思维能力,加强用坐标法解决圆锥曲线问题的能力。 3.鼓励学生大胆猜想、论证,激发学生的学习热情,使他们获得 成功的体验。 四、教学重点和难点 其推导方法。 2.难点:椭圆标准方程的推导。 1.重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及 五、教法与学法 1教法 为了使学生更主动地参加到课堂教学中,体现以学生为主体的探 究性学习和因材施教的原则,故采用自主探究法。按照“创设情境 自主探究建立模型拓展应用”的模式来组织教学。 2学法 在教学过程中,要充分调动学生的积极性和主动性,为学生提供自 主学习的时间和空间。让他们经历椭圆图形的形成过程、定义的归纳概 括
8、过程、方程的推导化简过程,主动地获取知识。 3教学准备 (1)学生准备:一支铅笔、两个图钉、一根细绳、一张硬纸板。 (2)教师准备:用ppt及几何画板制作的课件。 借助多媒体生动、直观的演示, 六、教学过程设计 (一)创设情境,复习引入 由嫦娥二号绕月飞行的运动轨迹及现实生活中的多幅椭圆的图片引使学生明确学习椭入。(嫦娥二号绕月飞行、行星运行、国家大剧院、鸟巢、亚运场馆沙特 圆的重要性和必要馆、油罐车等) (二)动手实验,归纳概念 问:自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢? 引导:先回忆如何画圆 (学生利用手中的细线画圆,教师再用几何画板画圆) 画圆容易那如果要画椭圆该怎么画呢
9、?(先介绍课前数学实验中的方法用几何画板作椭圆) 让学生回忆起要画 一个圆只要一定点和一定长就可以。现在若把一点变成两点,到定点的距离等于定长变成到两定点的距离之和等于定长。再把笔紧贴细线画图,得到的图形是什么呢? (学生利用手中细线配合同桌共同完成,得到椭圆。我将在黑板上 性。同时,激发他们探求实际问题的兴趣,使他们主动、积极地参与到教学中来,为后面的学习做好准备。 2 用同一方法作图,并利用几何画板演示) 提出问题:“在画图的过程中,哪些量发生了变化,哪些量没有 以活动为载体,变?” 让学生根据自己的实验,观察回答:“两定点间的距离没变,绳子让学生在“做”中的长度没变,点在运动。” 学数学
10、,通过画椭 再问:“你们能根据刚才画椭圆的过程,类比圆的定义,归纳概括出椭圆的定义吗?” 圆,经历知识的形 (多媒体给出圆的定义) 成过程,积累感性 先让学生独立思考一分钟,然后同桌交流,再进行全班交流,逐步 经验。 完善,概括出椭圆的定义。 椭圆的定义:平面上到两个定点f1, f2的距离之和为固定值(大于 |f1f2|)的点的轨迹叫作椭圆. 引导学生对定义中的关键词进行分析理解 注意:椭圆定义中容易遗漏的三处地方: (1)必须在平面内; (2)两个定点-两点间距离确定; (3)绳长-轨迹上任意点到两定点距离和确定 问:“为何固定值要大于两定点间的距离呢?等于、小于又如 何呢?” (学生动手验
11、证并发表自己意见,我再用课件演示) 总结:当大于时 椭圆 当等于时 线段 当小于时 不存在 (三)启发引导,推导方程 问:怎么推导椭圆的标准方程呢? 先回顾圆方程推导的步骤,给出求动点轨迹方程的一般步骤: 1、建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点m 的坐标; 2、写出适合条件 p(m) ; 3、用坐标表示条件p(m),列出方程 ; 4、化方程为最简形式。 ? 探讨建立平面直角坐标系的方案 启发学生类比求圆的方程的建系方法,建立适当的直角坐标系。 探讨几种建系方案。最后采用以下两种方案 方案一:以两定点的连线为x轴,其垂直平分线为y轴; 方案二:以两定点的连线为y轴,其垂直平分线为x轴。 椭圆标准方程教学设计 椭圆的标准方程教学设计 椭圆的标准方程教学设计 椭圆及其标准方程教学设计 椭圆及其标准方程教学设计 椭圆及其标准方程教学设计 2.2.1椭圆及其标准方程教学设计 椭圆的标准方程教学案例 椭圆及其标准方程教学反思 7椭圆及其标准方程的教学反思