2023年高考数学总复习宝典3~4章.doc

上传人:吴** 文档编号:63769903 上传时间:2022-11-26 格式:DOC 页数:188 大小:5.40MB
返回 下载 相关 举报
2023年高考数学总复习宝典3~4章.doc_第1页
第1页 / 共188页
2023年高考数学总复习宝典3~4章.doc_第2页
第2页 / 共188页
点击查看更多>>
资源描述

《2023年高考数学总复习宝典3~4章.doc》由会员分享,可在线阅读,更多相关《2023年高考数学总复习宝典3~4章.doc(188页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第1讲导数的概念与导数的计算最新考纲1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数yc(c为常数),yx,y,yx2,yx3,y的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如yf(axb)的复合函数)的导数.知 识 梳 理1.函数yf(x)在xx0处的导数(1)定义:称函数yf(x)在xx0处的瞬时变化率Error! No bookmark name given. Error! No bookmark name given. 为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,

2、即f(x0).(2)几何意义:函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的斜率.相应地,切线方程为yy0f(x0)(xx0).2.函数yf(x)的导函数如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数yf(x)在开区间内的导函数.记作f(x)或y.3.基本初等函数的导数公式基本初等函数导函数f(x)c(c为常数)f(x)0f(x)x(Q*)f(x)x1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)exf(x)exf(x)ax(a0)f(x)ax

3、ln_af(x)ln xf(x)f(x)logax (a0,a1)f(x)4.导数的运算法则若f(x),g(x)存在,则有:(1)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0).5.复合函数的导数复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux,即y对x的导数等于y对u的导数与u对x的导数的乘积.诊 断 自 测1.判断正误(在括号内打“”或“”)(1)f(x0)与(f(x0)表示的意义相同.()(2)曲线的切线与曲线不一定只有一个公共点.()(3)(2x)x2x1.()(4)若f(x)e2x,则

4、f(x)e2x.()解析(1)f(x0)是函数f(x)在x0处的导数,(f(x0)是常数f(x0)的导数即(f(x0)0;(3)(2x)2xln 2;(4)(e2x)2e2x.答案(1)(2)(3)(4)2.函数yxcos xsin x的导数为()A.xsin x B.xsin xC.xcos x D.xcos x解析y(xcos x)(sin x)cos xxsin xcos xxsin x.答案B3.(选修22P18AT7改编)曲线y在x处的切线方程为()A.y0 B.yC.yx D.yx解析y,y|x,当x时,y,切线方程为y,即yx.答案C4.(2017西安月考)设曲线yaxln(x1

5、)在点(0,0)处的切线方程为y2x,则a_.解析ya,由题意得y|x02,即a12,所以a3.答案35.(2017丽水调研)如图,函数yf(x)的图象在点P处的切线方程是yx8,则f(5)_;f(5)_.解析f(5)1,f(5)583.答案136.(2017舟山调研)定义在R上的函数f(x)满足f(x)f(1)e2x2x22f(0)x,则f(0)_;f(x)_.解析f(x)f(1)e2x2x22f(0)x,f(x)f(1)e2x22x2f(0),f(1)f(1)22f(0),f(0)1,即1f(1)e2,f(x)e2xx22x.答案1e2xx22x考点一导数的运算【例1】 分别求下列函数的导

6、数:(1)yexln x;(2)yx;(3)yxsincos;(4)yln.解(1)y(ex)ln xex(ln x)exln xexex.(2)yx31,y3x2.(3)yxsin x,y1cos x.(4)ylnln(12x),y(12x).规律方法求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;(3)对数形式:先化为和、差的形式,再求导;(4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式

7、转化为和或差的形式,再求导;(6)复合函数:由外向内,层层求导.【训练1】 求下列函数的导数:(1)yx2sin x;(2)y;(3)yxsincos;(4)yln(2x5).解(1)y(x2)sin xx2(sin x)2xsin xx2cos x.(2)y.(3)yxsincosxsin(4x)xsin 4x.ysin 4xx4cos 4xsin 4x2xcos 4x.(4)令u2x5,yln u.则y(ln u)u2,即y.考点二导数的几何意义(多维探究)命题角度一求切线的方程【例21】 (1)函数f(x)的图象在点(1,2)处的切线方程为()A.2xy40 B.2xy0C.xy30 D

8、.xy10(2)已知曲线yx3上一点P,则过点P的切线方程为_.解析(1)f(x),则f(1)1,故函数f(x)的图象在点(1,2)处的切线方程为y(2)x1,即xy30.(2)设切点坐标为,由yx2,得y|xx0x,即过点P的切线的斜率为x,又切线过点P,若x02,则x,解得x01,此时切线的斜率为1;若x02,则切线的斜率为4.故所求的切线方程是yx2或y4(x2),即3x3y20或12x3y160.答案(1)C(2)3x3y20或12x3y160命题角度二求参数的值【例22】 (1)已知直线yx1与曲线yln(xa)相切,则a的值为()A.1 B.2 C.1 D.2(2)(2017温州调

9、研)若函数f(x)x2axln x存在垂直于y轴的切线,则实数a的取值范围是_.解析(1)设切点为(x0,y0),y,所以有解得(2)f(x)x2axln x,f(x)xa.f(x)存在垂直于y轴的切线,f(x)存在零点,xa0有解,ax2(x0).答案(1)B(2)2,)命题角度三公切线问题【例23】 (2015全国卷)已知曲线yxln x在点(1,1)处的切线与曲线yax2(a2)x1相切,则a_.解析法一yxln x,y1,y|x12.曲线yxln x在点(1,1)处的切线方程为y12(x1),即y2x1.y2x1与曲线yax2(a2)x1相切,a0(当a0时曲线变为y2x1与已知直线平

10、行).由消去y,得ax2ax20.由a28a0,解得a8.法二同法一得切线方程为y2x1.设y2x1与曲线yax2(a2)x1相切于点(x0,ax(a2)x01).y2ax(a2),y|xx02ax0(a2).由解得答案8规律方法(1)求切线方程的方法:求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:切点处的导数是切线的斜率;切点在切线上;切点在

11、曲线上.【训练2】 若存在过点(1,0)的直线与曲线yx3和yax2x9(a0)都相切,则a的值为()A.1或 B.1或C.或 D.或7解析由yx3得y3x2,设曲线yx3上任意一点(x0,x)处的切线方程为yx3x(xx0),将(1,0)代入得x00或x0.当x00时,切线方程为y0,由得ax2x90,4a90得a.当x0时,切线方程为yx,由得ax23x0,324a0得a1.综上知,a1或a.答案A思想方法1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误

12、.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.易错防范1.求导常见易错点:公式(xn)nxn1与(ax)axln a相互混淆;公式中“”“”号记混,如出现如下错误:,(cos x)sin x;复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.基础巩固题组(建议用时:40分钟)一、选择题1.设曲线yeaxln(x1)在

13、x0处的切线方程为2xy10,则a()A.0 B.1 C.2 D.3解析yeaxln(x1),yaeax,当x0时,ya1.曲线yeaxln(x1)在x0处的切线方程为2xy10,a12,即a3.故选D.答案D2.若f(x)2xf(1)x2,则f(0)等于()A.2 B.0 C.2 D.4解析f(x)2f(1)2x,令x1,得f(1)2,f(0)2f(1)4.答案D3.(2017杭州质测)曲线f(x)x3x3在点P处的切线平行于直线y2x1,则P点的坐标为()A.(1,3) B.(1,3)C.(1,3)和(1,3) D.(1,3)解析f(x)3x21,令f(x)2,则3x212,解得x1或x1

14、,P(1,3)或(1,3),经检验,点(1,3),(1,3)均不在直线y2x1上,故选C.答案C4.(2017石家庄调研)已知曲线yln x的切线过原点,则此切线的斜率为()A.e B.e C. D.解析yln x的定义域为(0,),且y,设切点为(x0,ln x0),则y|xx0,切线方程为yln x0(xx0),因为切线过点(0,0),所以ln x01,解得x0e,故此切线的斜率为.答案C5.(2016郑州质检)已知yf(x)是可导函数,如图,直线ykx2是曲线yf(x)在x3处的切线,令g(x)xf(x),g(x)是g(x)的导函数,则g(3)()A.1 B.0 C.2 D.4解析由题图

15、可知曲线yf(x)在x3处切线的斜率等于,f(3),g(x)xf(x),g(x)f(x)xf(x),g(3)f(3)3f(3),又由题图可知f(3)1,所以g(3)130.答案B二、填空题6.(2015天津卷改编)已知函数f(x)axln x,x(0,),其中a为实数,f(x)为f(x)的导函数,若f(1)3,则a的值为_;f(x)在x1处的切线方程为_.解析f(x)aa(1ln x),由于f(1)a(1ln 1)a,又f(1)3,所以a3.f(x)3xln x,f(1)0,f(x)在x1处的切线方程为y3(x1),即为3xy30.答案33xy307.(2016全国卷)已知f(x)为偶函数,当

16、x0时,f(x)ln(x)3x,则曲线yf(x)在点(1,3)处的切线方程是_.解析设x0,则x0,f(x)ln x3x,又f(x)为偶函数,f(x)ln x3x,f(x)3,f(1)2,切线方程为y2x1.答案2xy108.(2015陕西卷)设曲线yex在点(0,1)处的切线与曲线y(x0)上点P处的切线垂直,则P的坐标为_.解析yex,曲线yex在点(0,1) 处的切线的斜率k1e01,设P(m,n),y(x0)的导数为y(x0),曲线y(x0)在点P处的切线斜率k2(m0),因为两切线垂直,所以k1k21,所以m1,n1,则点P的坐标为(1,1).答案(1,1)三、解答题9.(2017长

17、沙调研)已知点M是曲线yx32x23x1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l的倾斜角的取值范围.解(1)yx24x3(x2)211,当x2时,y1,y,斜率最小的切线过点,斜率k1,切线方程为3x3y110.(2)由(1)得k1,tan 1,又0,),.故的取值范围为.10.已知曲线yx3.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程.解(1)P(2,4)在曲线yx3上,且yx2,在点P(2,4)处的切线的斜率为y|x24.曲线在点P(2,4)处的切线方程为y44(x2),即4xy40.(2)设曲线yx3与过点P(2,

18、4)的切线相切于点A,则切线的斜率为y|xx0x.切线方程为yx(xx0),即yxxx.点P(2,4)在切线上,42xx,即x3x40,xx4x40,x(x01)4(x01)(x01)0,(x01)(x02)20,解得x01或x02,故所求的切线方程为xy20或4xy40.能力提升题组(建议用时:25分钟)11.已知f1(x)sin xcos x,fn1(x)是fn(x)的导函数,即f2(x)f1(x),f3(x)f2(x),fn1(x)fn(x),nN*,则f2 017(x)等于()A.sin xcos x B.sin xcos xC.sin xcos x D.sin xcos x解析f1(

19、x)sin xcos x,f2(x)f1(x)cos xsin x,f3(x)f2(x)sin xcos x,f4(x)f3(x)cos xsin x,f5(x)f4(x)sin xcos x,fn(x)是以4为周期的函数,f2 017(x)f1(x)sin xcos x,故选D.答案D12.已知函数f(x)g(x)x2,曲线yg(x)在点(1,g(1)处的切线方程为y2x1,则曲线yf(x)在点(1,f(1)处的切线的斜率为()A.4 B. C.2 D.解析f(x)g(x)2x.yg(x)在点(1,g(1)处的切线方程为y2x1,g(1)2,f(1)g(1)21224,曲线yf(x)在点(1

20、,f(1)处的切线的斜率为4.答案A13.(2016全国卷)若直线ykxb是曲线yln x2的切线,也是曲线yln(x1)的切线,则b_.解析yln x2的切线为:yxln x11(设切点横坐标为x1).yln(x1)的切线为:yxln(x21)(设切点横坐标为x2).解得x1,x2,bln x111ln 2.答案1ln 214.设函数f(x)ax,曲线yf(x)在点(2,f(2)处的切线方程为7x4y120.(1)求f(x)的解析式;(2)曲线f(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,并求此定值.解(1)方程7x4y120可化为yx3,当x2时,y.又f(x)a,

21、于是解得故f(x)x.(2)设P(x0,y0)为曲线上任一点,由y1知曲线在点P(x0,y0)处的切线方程为yy0(xx0),即y(xx0).令x0,得y,从而得切线与直线x0的交点坐标为.令yx,得yx2x0,从而得切线与直线yx的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x0,yx所围成的三角形的面积为S|2x0|6.故曲线yf(x)上任一点处的切线与直线x0,yx所围成的三角形面积为定值,且此定值为6.15.如图,从点P1(0,0)作x轴的垂线交曲线yex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程

22、得到一系列点:P1,Q1;P2,Q2;Pn,Qn,记Pk点的坐标为(xk,0)(k1,2,n).(1)试求xk与xk1的关系(k2,n);(2)求|P1Q1|P2Q2|P3Q3|PnQn|.解(1)设点Pk1的坐标是(xk1,0),yex,yex,Qk1(xk1,exk1),在点Qk1(xk1,exk1)处的切线方程是yexk1exk1(xxk1),令y0,则xkxk11(k2,n).(2)x10,xkxk11,xk(k1),|PkQk|exke(k1),于是有|P1Q1|P2Q2|P3Q3|PnQn|1e1e2e(n1),即|P1Q1|P2Q2|P3Q3|PnQn|.第2讲导数与函数的单调性

23、最新考纲了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知 识 梳 理1.函数的单调性与导数的关系已知函数f(x)在某个区间内可导,(1)如果f(x)0,那么函数yf(x)在这个区间内单调递增;(2)如果f(x)0,那么函数yf(x)在这个区间内单调递减.2.利用导数求函数单调区间的基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)由f(x)0(或0)解出相应的x的取值范围.当f(x)0时,f(x)在相应的区间内是单调递增函数;当f(x)0时,f(x)在相应的区间内是单调递减函数.一般需要通过列表,写出函数的单调区

24、间.3.已知单调性求解参数范围的步骤为:(1)对含参数的函数f(x)求导,得到f(x);(2)若函数f(x)在a,b上单调递增,则f(x)0恒成立;若函数f(x)在a,b上单调递减,则f(x)0恒成立,得到关于参数的不等式,解出参数范围;(3)验证参数范围中取等号时,是否恒有f(x)0.若f(x)0恒成立,则函数f(x)在(a,b)上为常数函数,舍去此参数值.诊 断 自 测1.判断正误(在括号内打“”或“”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f(x)0.()(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性.()(3)f(x)0是f(x)为增函

25、数的充要条件.()解析(1)f(x)在(a,b)内单调递增,则有f(x)0.(2)f(x)0是f(x)为增函数的充分不必要条件.答案(1)(2)(3)2.函数f(x)exx的单调递增区间是()A.(,1 B.1,)C.(,0 D.(0,)解析令f(x)ex10得x0,所以f(x)的递增区间为(0,).答案D3.设f(x)是函数f(x)的导函数,yf(x)的图象如图所示,则yf(x)的图象最有可能是()解析由yf(x)的图象易知当x0或x2时,f(x)0,故函数yf(x)在区间(,0)和(2,)上单调递增;当0x2时,f(x)0,故函数yf(x)在区间(0,2)上单调递减.答案C4.(2014全

26、国卷)若函数f(x)kxln x在区间(1,)单调递增,则k的取值范围是()A.(,2 B.(,1C.2,) D.1,)解析依题意得f(x)k0在(1,)上恒成立,即k在(1,)上恒成立,x1,01,k1,故选D.答案D5.若f(x),0abe,则f(a)与f(b)的大小关系为_.解析f(x),当0xe时,1ln x0,即f(x)0,f(x)在(0,e)上单调递增,f(a)f(b).答案f(a)f(b)考点一求不含参数的函数的单调性【例1】 已知函数f(x)ax3x2(aR)在x处取得极值.(1)确定a的值;(2)若g(x)f(x)ex,讨论g(x)的单调性.解(1)对f(x)求导得f(x)3

27、ax22x,因为f(x)在x处取得极值,所以f0,所以3a20,解得a.(2)由(1)得g(x)ex,故g(x)exexexx(x1)(x4)ex.令g(x)0,解得x0,x1或x4.当x4时,g(x)0,故g(x)为减函数;当4x0,故g(x)为增函数;当1x0时,g(x)0时,g(x)0,故g(x)为增函数.综上知,g(x)在(,4)和(1,0)内为减函数,在(4,1)和(0,)内为增函数.规律方法确定函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f(x);(3)解不等式f(x)0,解集在定义域内的部分为单调递增区间;(4)解不等式f(x)0).令y0,得00,此时f(x)0

28、,函数f(x)单调递减;当x(1,)时,g(x)0,函数f(x)单调递增;()当a0时,由g(x)0,即ax2x1a0,解得x11,x21.当a时,x1x2,g(x)0恒成立,此时f(x)0,等号只在x1时取得,所以函数f(x)在(0,)上单调递减;当0a10,x(0,1)时,g(x)0,此时f(x)0,函数f(x)单调递减;x时,g(x)0,函数f(x)单调递增;x时,g(x)0,此时f(x)0,函数f(x)单调递减.当a0时,由于10,此时f(x)0,f(x)单调递减;x(1,)时,g(x)0,函数f(x)单调递增.综上所述:当a0时,函数f(x)在(0,1)上单调递减,在(1,)上单调递

29、增;当a时,函数f(x)在(0,)上单调递减;当0a时,函数f(x)在(0,1)上单调递减,在上单调递增,在上单调递减.考点三利用函数的单调性求参数(易错警示)【例3】 (2017成都诊断)已知函数f(x)ln x,g(x)ax22x(a0).(1)若函数h(x)f(x)g(x)存在单调递减区间,求实数a的取值范围;(2)若函数h(x)f(x)g(x)在1,4上单调递减,求实数a的取值范围.解(1)h(x)ln xax22x,x(0,),所以h(x)ax2,由h(x)在(0,)上存在单调递减区间,所以当x(0,)时,ax2有解.设G(x),所以只要aG(x)min即可.而G(x)1,所以G(x

30、)min1.所以a1.(2)由h(x)在1,4上单调递减得,当x1,4时,h(x)ax20恒成立,即a恒成立.设G(x),所以aG(x)max,而G(x)1,因为x1,4,所以,所以G(x)max(此时x4),所以a.规律方法利用单调性求参数的两类热点问题的处理方法(1)函数f(x)在区间D上存在递增(减)区间.方法一:转化为“f(x)0(0(0)成立”.(2)函数f(x)在区间D上递增(减).方法一:转化为“f(x)0(0)在区间D上恒成立”问题;方法二:转化为“区间D是函数f(x)的单调递增(减)区间的子集”.易错警示对于:处理函数单调性问题时,应先求函数的定义域;对于:h(x)在(0,)

31、上存在递减区间,应等价于h(x)0在(0,)上有解,易误认为“等价于h(x)0在(0,)上有解”,多带一个“”之所以不正确,是因为“h(x)0在(0,)上有解即为h(x)0在(0,)上有解,或h(x)0在(0,)上有解”,后者显然不正确;对于:h(x)在1,4上单调递减,应等价于h(x)0在1,4上恒成立,易误认为“等价于h(x)0(0得x,令f(x)0得0x0.答案C3.已知函数f(x)x3ax4,则“a0”是“f(x)在R上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析f(x)x2a,当a0时,f(x)0恒成立,故“a0”是“f(x)在R上

32、单调递增”的充分不必要条件.答案A4.已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如图所示,则该函数的图象是()解析由yf(x)的图象知,yf(x)在1,1上为增函数,且在区间(1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.答案B5.设函数f(x)x29ln x在区间a1,a1上单调递减,则实数a的取值范围是()A.(1,2 B.4,)C.(,2 D.(0,3解析f(x)x29ln x,f(x)x(x0),当x0时,有00且a13,解得10得x1,f(x)的单调递增区间为(1,),令f(x)0,得x1且x0,f(x)的单调减区间为(,0)和(0,1).答案(1,)(,0)和(0,1)7.已知函数f(x)x24x3ln x在区间t,t1上不单调,则实数t的取值范围是_.解析由题意知f(x)x4,由f(x)0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,由t1t1或t3t1,得0t1或2t3.答案(0,1)(2,3)8.(2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁