《广东省广州市第一中学高中数学 3.2.3直线一般方程课件 新人教必修2.ppt》由会员分享,可在线阅读,更多相关《广东省广州市第一中学高中数学 3.2.3直线一般方程课件 新人教必修2.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【学习目标【学习目标】1 1灵活的使用直线的各种形式方程并能相互转化;灵活的使用直线的各种形式方程并能相互转化;2 2掌握直线的一般式方程;掌握直线的一般式方程;重点:重点:灵活应用直线的各种形式方程;灵活应用直线的各种形式方程;难点:难点:灵活应用直线的各种形式方程;灵活应用直线的各种形式方程;2021/8/8 星期日1复习提问复习提问 直线方程有几种形式?直线方程有几种形式?点斜式点斜式:已知直线上一点:已知直线上一点P1(x1,y1)的坐标,)的坐标,和直线的斜率和直线的斜率k,则直线的方程是,则直线的方程是斜截式斜截式:已知直线的斜率:已知直线的斜率k,和直线在,和直线在y轴上的轴上的
2、截距截距b则直线方程是则直线方程是两点式两点式:已知直线上两点:已知直线上两点P1(x1,y1),),P2(x2,y2)则直线的方程是:则直线的方程是:截距式截距式:已知直线在:已知直线在X轴轴Y轴上的截距为轴上的截距为a,b,则直线的方程是则直线的方程是2021/8/8 星期日2【问题导学问题导学】(是)(是)(是)(是)1 1、平面直角坐标系中的每一条直线、平面直角坐标系中的每一条直线、平面直角坐标系中的每一条直线、平面直角坐标系中的每一条直线 都可以用一个关于都可以用一个关于都可以用一个关于都可以用一个关于 、的二元一次方程表示?的二元一次方程表示?的二元一次方程表示?的二元一次方程表示
3、?(1 1)若)若)若)若 斜率为斜率为斜率为斜率为k k,且过点且过点且过点且过点 ,(2 2)若)若)若)若 斜率不存在,且过点斜率不存在,且过点斜率不存在,且过点斜率不存在,且过点其方程为:其方程为:其方程为:其方程为:是否关于是否关于是否关于是否关于 、的二元一次方程?的二元一次方程?的二元一次方程?的二元一次方程?其方程为:其方程为:其方程为:其方程为:是否关于是否关于是否关于是否关于 、的二元一次方程的二元一次方程的二元一次方程的二元一次方程?(是)(是)(是)(是)上述四种直线方程,能否写成如下统一形式?上述四种直线方程,能否写成如下统一形式??x+?y+?=02021/8/8
4、星期日33 3、任意的二元一次方程、任意的二元一次方程、任意的二元一次方程、任意的二元一次方程 (、不同不同不同不同时为时为时为时为0 0)都表示直线吗?)都表示直线吗?)都表示直线吗?)都表示直线吗?它表示过点它表示过点它表示过点它表示过点 、斜率为、斜率为、斜率为、斜率为 的直线的直线的直线的直线它表示垂直于它表示垂直于它表示垂直于它表示垂直于 轴的一条直线轴的一条直线轴的一条直线轴的一条直线(1 1)若)若)若)若 ,方程,方程,方程,方程 可化为可化为可化为可化为(2 2)若)若)若)若 ,方程,方程,方程,方程 可化为可化为可化为可化为2 2、任意的二元一次方程、任意的二元一次方程、
5、任意的二元一次方程、任意的二元一次方程 (、不同不同不同不同时为时为时为时为0 0)都表示直线吗?)都表示直线吗?)都表示直线吗?)都表示直线吗?思考:直线与二元一次方程具有什么样的关系?思考:直线与二元一次方程具有什么样的关系?结论结论:(1)直线方程都是关于直线方程都是关于x,y的二元一次方程的二元一次方程 (2)关于关于x,y的二元一次方程图象又都是一条直线。的二元一次方程图象又都是一条直线。【问题导学问题导学】方程方程Ax+By+C=0(A,B不同时为零)叫做不同时为零)叫做直线方程的一般式直线方程的一般式。2021/8/8 星期日4预习自测预习自测2、直线的一般式方程、直线的一般式方
6、程 化成斜截式方程化成斜截式方程为为_ ;它的斜率为;它的斜率为 ;在;在 x轴上的截距为轴上的截距为 ;在;在y轴上的截距为轴上的截距为 ;化成截距式方程为化成截距式方程为 ;2021/8/8 星期日5【例题探究例题探究】例例例例1.1.在方程在方程在方程在方程 (A A、B B不同时为不同时为不同时为不同时为0 0)中,)中,)中,)中,A A、B B、C C为何值时,方程表示的直线为何值时,方程表示的直线为何值时,方程表示的直线为何值时,方程表示的直线(1 1)平行于)平行于)平行于)平行于x x轴;(轴;(轴;(轴;(2 2)平行于)平行于)平行于)平行于y y轴;(轴;(轴;(轴;(
7、3 3)与)与)与)与 x x轴重合;轴重合;轴重合;轴重合;(4 4)与)与)与)与y y 轴重合(轴重合(轴重合(轴重合(5 5)过原点。)过原点。)过原点。)过原点。例例2:根据下列条件写出直线的方程,并把它写成一般式:根据下列条件写出直线的方程,并把它写成一般式例例3一条光线从点一条光线从点 射出,与轴相交于射出,与轴相交于 ,经过,经过x轴轴的反射,求入射光线和反射光线所在的直线方程并化为一的反射,求入射光线和反射光线所在的直线方程并化为一般式。般式。2021/8/8 星期日6例题探究例题探究例例例例1.1.在方程在方程在方程在方程 (A A、B B不同时为不同时为不同时为不同时为0
8、 0)中,)中,)中,)中,、A A、B B、C C为何值时,方程表示的直线为何值时,方程表示的直线为何值时,方程表示的直线为何值时,方程表示的直线(1 1)平行于)平行于)平行于)平行于x x轴;(轴;(轴;(轴;(2 2)平行于)平行于)平行于)平行于y y轴;轴;轴;轴;(3 3)与)与)与)与 x x轴重合;(轴重合;(轴重合;(轴重合;(4 4)与)与)与)与y y 轴重合轴重合轴重合轴重合(5 5)过原点。)过原点。)过原点。)过原点。2021/8/8 星期日7例例2:根据下列条件写出直线的方程,并把它写成一般式:根据下列条件写出直线的方程,并把它写成一般式反思:反思:对比互相垂直
9、对比互相垂直的两条直线的方程,的两条直线的方程,你发现它们之间的什你发现它们之间的什么关系?么关系?(4)解法二:)解法二:(待定系数法)(待定系数法)设所求直线方程为设所求直线方程为2x+y+C=02021/8/8 星期日8注:对于直线方程的一般式,一般作如下约定:注:对于直线方程的一般式,一般作如下约定:1 1、一般按含、一般按含x x项、含项、含y y项、常数项顺序排列项、常数项顺序排列2 2、x x项的系数为正;项的系数为正;3 3、x x,y y的系数和常数项一般不出现分数;的系数和常数项一般不出现分数;4 4、无特别说明时,最好将所求直线方程的结果写、无特别说明时,最好将所求直线方
10、程的结果写成一般式。成一般式。2021/8/8 星期日9例例3一条光线从点一条光线从点 射出,与轴相交于射出,与轴相交于 ,经过,经过x轴的反射,求入射光线和反射光线所在的直线方程并化为轴的反射,求入射光线和反射光线所在的直线方程并化为一般式。一般式。oQPyxP1综上,入射光线和反射光线所在的直线方程为综上,入射光线和反射光线所在的直线方程为2021/8/8 星期日101、直线的、直线的一般式一般式方程是方程是:(简称简称一般式一般式)Ax+By+C=0 (A,BAx+By+C=0 (A,B不同时为不同时为不同时为不同时为0)0)(1 1)直线方程都是关于)直线方程都是关于)直线方程都是关于
11、)直线方程都是关于x,yx,y的二元一次方程的二元一次方程的二元一次方程的二元一次方程(2 2)关于)关于)关于)关于x,yx,y的二元一次方程图象又都是一条直线的二元一次方程图象又都是一条直线的二元一次方程图象又都是一条直线的二元一次方程图象又都是一条直线【总结提升总结提升】(3 3)当)当)当)当 时,斜率为时,斜率为时,斜率为时,斜率为 ,纵截距为,纵截距为,纵截距为,纵截距为 当当当当 ,斜率不存在,直线为垂直于,斜率不存在,直线为垂直于,斜率不存在,直线为垂直于,斜率不存在,直线为垂直于x x轴的直线轴的直线轴的直线轴的直线3、(1)与与Ax+By+C=0平行的直线可设为平行的直线可设为Ax+By+D=0;(2)与)与Ax+By+C=0垂直的直线可设为垂直的直线可设为Bx-Ay+E=02021/8/8 星期日11课后作业答案课后作业答案1 1、(、(、(、(1 1)(2 2)2 2、3 3、4、5、2021/8/8 星期日12课后作业答案课后作业答案2021/8/8 星期日132021/8/8 星期日14