《中考数学常考易错点:《二次函数》知识点梳理 .pdf》由会员分享,可在线阅读,更多相关《中考数学常考易错点:《二次函数》知识点梳理 .pdf(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、二次函数二次函数 知识点总结知识点总结一、二次函数概念:一、二次函数概念:1二次函数的概念:一般地,形如y ax2bxc(a,b,c是常数,a 0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a 0,而b,c可以为零二次函数的定义域是全体实数2.二次函数y ax2bxc的结构特征:等号左边是函数,右边是关于自变量x的二次式,x的最高次数是 2a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项二、二次函数的基本形式二、二次函数的基本形式1.二次函数基本形式:y ax2的性质:a 的绝对值越大,抛物线的开口越小。a的符号a 0a 0开口方向向上向下顶点坐标对称轴y轴
2、y轴性质x 0时,y随x的增大而增大;x 0时,y随x的增大而减小;x 0时,y有最小值0 x 0时,y随x的增大而减小;x 0时,y随x的增大而增大;x 0时,y有最大值00,00,02.y ax2c的性质:上加下减。a的符号a 0a 0开口方向向上向下顶点坐标对称轴y轴y轴性质x 0时,y随x的增大而增大;x 0时,y随x的增大而减小;x 0时,y有最小值cx 0时,y随x的增大而减小;x 0时,y随x的增大而增大;x 0时,y有最大值c0,c0,c第 1 页 共 15 页3.y axh的性质:2左加右减。a的符号a 0a 0开口方向向上向下顶点坐标对称轴X=h性质x h时,y随x的增大而
3、增大;x h时,y随x的增大而减小;x h时,y有最小值0 x h时,y随x的增大而减小;x h时,y随x的增大而增大;x h时,y有最大值0h,0h,0X=h4.y axhk的性质:2a的符号a 0a 0开口方向向上向下顶点坐标对称轴X=h性质x h时,y随x的增大而增大;x h时,y随x的增大而减小;x h时,y有最小值kx h时,y随x的增大而减小;x h时,y随x的增大而增大;x h时,y有最大值kh,kh,kX=h三、二次函数图象的平移1.平移步骤:方法一:将抛物线解析式转化成顶点式y axhk,确定其顶点坐标h,k;2 保持抛物线y ax2的形状不变,将其顶点平移到h,k处,具体平
4、移方法如下:2.平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”概括成八个字“左加右减,上加下减”方法二:y ax bx c沿y轴平移:向上(下)平移m个单位,y ax bx c变成22y ax2bx c m(或y ax2bx c m)第 2 页 共 15 页y ax bx c沿轴平移:向左(右)平移m个单位,y ax bx c变成22y a(x m)2b(x m)c(或y a(x m)2b(x m)c)四、二次函数四、二次函数y axhk与与y ax2bxc的比较的比较从解析式上看,y axhk与y ax2bxc是两种不同的表达形式,后者通过配b4acb2b4acb2方可
5、以得到前者,即yax,其中h,k2a4a2a4a222五、二次函数五、二次函数y ax2bx c图象的画法图象的画法五点绘图法:利用配方法将二次函数y ax2bx c化为顶点式y a(x h)2 k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0,c、以及0,c关于对称轴对称的点2h,c、与x轴的交点x1,0,x2,0(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数六、二次函数y ax2bxc的性质的性质b4acb2b1.当a 0时,抛物
6、线开口向上,对称轴为x,顶点坐标为,2a4a2a当x bbb时,y随x的增大而减小;当x 时,y随x的增大而增大;当x 2a2a2a4acb2时,y有最小值4ab4acb2b2.当a 0时,抛物线开口向下,对称轴为x,顶点坐标为,当2a4a2ax bbb时,y随x的增大而增大;当x 时,y随x的增大而减小;当x 时,y2a2a2a4acb2有最大值4a七、二次函数解析式的表示方法七、二次函数解析式的表示方法1.一般式:y ax2bx c(a,b,c为常数,a 0);2.顶点式:y a(x h)2 k(a,h,k为常数,a 0);3.两根式:y a(x x1)(x x2)(a 0,x1,x2是抛
7、物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写2成交点式,只有抛物线与x轴有交点,即b 4ac 0时,抛物线的解析式才可以用交第 3 页 共 15 页点式表示二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数y ax2bxc中,a作为二次项系数,显然a 0 当a 0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a 0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大总结起来,a决定了抛物线开口的大小和方向,a
8、的正负决定开口方向,a的大小决定开口的大小2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴 在a 0的前提下,当b 0时,当b 0时,当b 0时,b 0,即抛物线的对称轴在y轴左侧;2ab 0,即抛物线的对称轴就是y轴;2ab 0,即抛物线对称轴在y轴的右侧2ab 0,即抛物线的对称轴在y轴右侧;2ab 0,即抛物线的对称轴就是y轴;2ab 0,即抛物线对称轴在y轴的左侧2a 在a 0的前提下,结论刚好与上述相反,即当b 0时,当b 0时,当b 0时,总结起来,在a确定的前提下,b决定了抛物线对称轴的位置ab的符号的判定:对称轴x b在y轴左边则ab 0,在y轴的右侧则ab
9、0,2a概括的说就是“左同右异”总结:3.常数项c 当c 0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;当c 0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;当c 0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负总结起来,c决定了抛物线与y轴交点的位置总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情第 4 页 共 15 页况:1.已知
10、抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称y ax2bxc关于x轴对称后,得到的解析式是y ax2bx c;y axhk关于x轴对称后,得到的解析式是y axhk;222.关于y轴对称y ax2bxc关于y轴对称后,得到的解析式是y ax2bxc;y axhk关于y轴对称后,得到的解析式是y axhk;223.关于原点对称y
11、ax2bxc关于原点对称后,得到的解析式是y ax2bxc;y axhk关于原点对称后,得到的解析式是y axhk;224.关于顶点对称(即:抛物线绕顶点旋转 180)b2;y ax bxc关于顶点对称后,得到的解析式是y axbxc2a22y axhk关于顶点对称后,得到的解析式是y axhk225.关于点m,n对称y axhk关于点m,n对称后,得到的解析式是y axh 2m 2nk22根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线
12、)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程ax2bx c 0是二次函数y ax2bx c当函数值y 0时的特殊情况.第 5 页 共 15 页图象与x轴的交点个数:当 b2 4ac 0时,图象与x轴交于两点Ax1,其中的x1,x20,Bx2,0(x1 x2),是一元二次方程ax2bx c 0a 0的两根这两点间的距离b24ac.ABx2x1a 当 0时,图象与x轴只有一个交点;当 0时,图象与x轴没有交点.1当a 0时
13、,图象落在x轴的上方,无论x为任何实数,都有y 0;2当a 0时,图象落在x轴的下方,无论x为任何实数,都有y 02.抛物线y ax2bx c的图象与y轴一定相交,交点坐标为(0,c);3.二次函数常用解题方法总结:求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;根据图象的位置判断二次函数y ax2bx c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.与二次
14、函数有关的还有二次三项式,二次三项式ax2bx c(a 0)本身就是所含字母x的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物 线与x轴有两个交点抛物 线与x轴只有一个交点抛物 线与x轴无交点二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0 0二次函数图像参考:第 6 页 共 15 页十一、函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数考查重点与常见题型1 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变
15、量的二次函数y (m 2)x m m 2的图像经过原点,则m的值是2 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y kx b的图像在第一、二、三象限内,那么函数y kx bx 1的图第 7 页 共 15 页222像大致是(y1)yy1y0 xo-1x0 x0-1xABCD3 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x 5,求这条抛物线的解析式。34 考查用配方法求抛物线的顶点坐标、对称轴
16、、二次函数的极值,有关试题为解答题,如:已知抛物线y ax2bx c(a0)与 x 轴的两个交点的横坐标是1、3,与 y 轴交点的纵坐标是32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5考查代数与几何的综合能力,常见的作为专项压轴题。【例题经典】由抛物线的位置确定系数的符号例 1(1)二次函数y ax2bx c的图像如图 1,则点M(b,)在(ca)A第一象限B第二象限C第三象限D第四象限2(2)已知二次函数 y=ax+bx+c(a0)的图象如图 2 所示,则下列结论:a、b 同号;当 x=1 和 x=3 时,函数值相等;4a+b=0;当 y=-2 时,x
17、 的值只能取 0.其中正确的个数是()A1 个B2 个C3 个D4 个(1)(2)【点评】弄清抛物线的位置与系数 a,b,c 之间的关系,是解决问题的关键例 2.已知二次函数 y=ax2+bx+c 的图象与 x 轴交于点(-2,O)、(x1,0),且 1x12,与 y 轴的正半轴的交点在点(O,2)的下方 下列结论:abO;4a+cO,其中正确结论的个数为()A 1 个B.2 个C.3 个D4 个会用待定系数法求二次函数解析式例 3.已知:关于 x 的一元二次方程 ax+bx+c=3 的一个根为 x=-2,且二次函数 y=ax+bx+c22的对称轴是直线 x=2,则抛物线的顶点坐标为()A(2
18、,-3)B.(2,1)C(2,3)D(3,2)第 8 页 共 15 页答案:C例 4、如图(单位:m),等腰三角形ABC 以 2 米/秒的速度沿直线 L 向正方形移动,直到 AB与 CD 重合设 x 秒时,三角形与正方形重叠部分的面积为 ym2(1)写出 y 与 x 的关系式;(2)当 x=2,3.5 时,y 分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例 5、已知抛物线 y=125x+x-22(1)用配方法求它的顶点坐标和对称轴(2)若该抛物线与 x 轴的两个交点为 A、B,求线段 AB 的长【点评】本题(1)是对二次函数的“基本方
19、法”的考查,第(2)问主要考查二次函数与一元二次方程的关系例 6、“已知函数y 12x bx c的图象经过点 A(c,2),2求证:这个二次函数图象的对称轴是 x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。点评:对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是 x=3”当作已知来用,再结合条件“图象经过点 A(c,
20、2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。解答(1)根据y 12x bx c的图象经过点 A(c,2),图象的对称轴是 x=3,2122cbcc 2,得b3,122解得b 3,c2.12x 3x 2.图象如图所示。2所以所求二次函数解析式为y(2)在解析式中令 y=0,得12x 3x 2 0,解得x1 35,x2 35.2第 9 页
21、 共 15 页所以可以填“抛物线与x 轴的一个交点的坐标是(3+5,0)”或“抛物线与x 轴的一个交点的坐标是(35,0).令 x=3 代入解析式,得y 所以抛物线y 125x 3x 2的顶点坐标为(3,),225所以也可以填抛物线的顶点坐标为(3,)等等。2函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。5,2用二次函数解决最值问题例 1 已知边长为 4 的正方形截去一个角后成为五边形 ABCDE(如图),其中AF=2,BF=1试在 AB 上求一点 P,使矩形
22、 PNDM 有最大面积【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力同时,也给学生探索解题思路留下了思维空间例 2某产品每件成本 10 元,试销阶段每件产品的销售价 x(元)与产品的日销售量 y(件)之间的关系如下表:x(元)152030y(件)252010若日销售量 y 是销售价 x 的一次函数(1)求出日销售量 y(件)与销售价 x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为 y=kx+b则15kb25,解得 k=-1,b=40,2k
23、b20即一次函数表达式为 y=-x+40(2)设每件产品的销售价应定为 x 元,所获销售利润为 w 元w=(x-10)(40-x)=-x2+50 x-400=-(x-25)2+225产品的销售价应定为 25 元,此时每日获得最大销售利润为 225 元【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程第 10 页 共 15 页二次函数对应练习试题二次函数对应练习试题一、选择题一、选择题1.二次函数y x 4x7的顶点
24、坐标是(A.(2,11)22)C.(2,11)D.y 2x 1)2B.(2,7)D.(2,3)2.把抛物线y 2x向上平移 1 个单位,得到的抛物线是(A.y 2(x1)22B.y 2(x1)2C.y 2x 123.函数y kx k和yk(k0)在同一直角坐标系中图象可能是图中的(x4.已知二次函数y ax bxc(a 0)的图象如图所示,则下列结论:a,b 同号;当x 1和x 3时,函数值相等;4ab 0当y 2时,x的值只能取 0.其中正确的个数是(A.1 个)B.2 个22C.3 个D.4 个5.已知二次函数y ax bxc(a 0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象
25、可知关于x的一元二次方程ax bxc 0的两个根分别是x11.3和x2().22B.-2.3C.-0.3D.-3.3)6.已知二次函数y ax bxc的图象如图所示,则点(ac,bc)在(A第一象限C第三象限7.方程2xxA.0 个2B第二象限D第四象限2的正根的个数为(xB.1 个)C.2 个.3 个8.已知抛物线过点 A(2,0),B(-1,0),与y轴交于点 C,且 OC=2.则这条抛物线的解析式为第 11 页 共 15 页A.y x x2C.y x x2或y x x 2222B.y x x 2D.y x x 2或y x x 2222二、填空题二、填空题9二次函数y x bx3的对称轴是
26、x 2,则b _。10已知抛物线 y=-2(x+3)+5,如果 y 随 x 的增大而减小,那么 x 的取值范围是_.11一个函数具有下列性质:图象过点(1,2),当x0 时,函数值y随自变量x的增大而增大;满足上述两条性质的函数的解析式是22(只写一个即可)。12抛物线y 2(x2)6的顶点为 C,已知直线y kx3过点 C,则这条直线与两坐标轴所围成的三角形面积为2。213.二次函数y 2x 4x1的图象是由y 2x bxc的图象向左平移 1 个单位,再向下平移 2 个单位得到的,则 b=,c=。14如图,一桥拱呈抛物线状,桥的最大高度是 16 米,跨度是 40 米,在线段 AB 上离中心M
27、 处 5 米的地方,桥的高度是(取 3.14).三、解答题:三、解答题:15.已知二次函数图象的对称轴是x3 0,图象经过(1,-6),且与y轴的交点为(0,(1)求这个二次函数的解析式;(2)当 x 为何值时,这个函数的函数值为 0?(3)当 x 在什么范围内变化时,这个函数的函数值y随 x 的增大而增大?第 15 题图5).216.某种爆竹点燃后,其上升高度 h(米)和时间 t(秒)符合关系式h v0t 212gt(0t2),2其中重力加速度 g 以 10 米/秒 计算这种爆竹点燃后以 v0=20 米/秒的初速度上升,第 12 页 共 15 页(1)这种爆竹在地面上点燃后,经过多少时间离地
28、 15 米?(2)在爆竹点燃后的 1.5 秒至 1.8 秒这段时间内,判断爆竹是上升,或是下降,并说明理由.17.如图,抛物线y x bxc经过直线y x3与坐标轴的两个交点 A、B,此抛物线与x轴的另一个交点为 C,抛物线顶点为 D.(1)求此抛物线的解析式;(2)点 P 为抛物线上的一个动点,求使SAPC:SACD5:4 的点 P的坐标。218.红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)当每吨售价为260元时,月销售量为45 吨该建材店为提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降 10
29、 元时,月销售量就会增加 7.5 吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用 100 元设每吨材料售价为 x(元),该经销店的月利润为 y(元)(1)当每吨售价是 240 元时,计算此时的月销售量;(2)求出 y 与 x 的函数关系式(不要求写出 x 的取值范围);(3)该建材店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大”你认为对吗?请说明理由第 13 页 共 15 页练习试题答案一,选择题、1A2C3A4B5D6B7C8C二、填空题、9b 412110 x-313-8711如y 2x 4,y 2x4等(答案不唯一)14152三、解
30、答题15(1)设抛物线的解析式为y ax2bx c,由题意可得b2a 3abc 65c 2(2)x 1或-5解得a 15,b 3,c 22所以y 125x 3x22(2)x 316(1)由已知得,15 20t 110t2,解得t1 3,t21当t 3时不合题意,舍去。222所以当爆竹点燃后 1 秒离地 15 米(2)由题意得,h 5t 20t5(t 2)20,可知顶点的横坐标t 2,又抛物线开口向下,所以在爆竹点燃后的 1.5 秒至 108 秒这段时间内,爆竹在上升17(1)直线y x3与坐标轴的交点 A(3,0),B(0,3)则93bc0解得c 3b 2c3所以此抛物线解析式为y x 2x3
31、(2)抛物线的顶点 D(1,4),与x轴的另一个交点 C(1,0).设P(a,a 2a 3),则(4 a 2a3):(44)5:4.2212212第 14 页 共 15 页化简得a 2a3 5当a 2a30 时,a 2a3 5得a 4,a 2222222P(4,5)或 P(2,5)当a 2a30 时,a 2a3 5即a 2a2 0,此方程无解综上所述,满足条件的点的坐标为(4,5)或(2,5)18(1)45260240260 x7.5),化简得:7.5=60(吨)(2)y(x100)(451010333y x2 315x 24000(3)y x2315x24000(x 210)2 9075444红星经销店要获得最大月利润,材料的售价应定为每吨 210 元(4)我认为,小静说的不对于月销售额Wx(45理由:方法一:当月利润最大时,x 为 210 元,而对260 x7.5)3(x160)219200来说,104当 x 为 160 元时,月销售额 W 最大当 x 为 210 元时,月销售额 W 不是最大小静说的不对方法二:当月利润最大时,x 为 210 元,此时,月销售额为 17325 元;而当 x 为 200元时,月销售额为 18000 元 1732518000,当月利润最大时,月销售额 W 不是最大 小静说的不对第 15 页 共 15 页