2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用必考点解析练习题(无超纲).docx

上传人:可**** 文档编号:57438906 上传时间:2022-11-05 格式:DOCX 页数:19 大小:374.58KB
返回 下载 相关 举报
2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用必考点解析练习题(无超纲).docx_第1页
第1页 / 共19页
2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用必考点解析练习题(无超纲).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用必考点解析练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用必考点解析练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十五章 概率的求法与应用必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率

2、是,则n的值是( )A10B12C13D142、小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )ABCD3、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )ABCD4、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2BabCb2Dab5、在一

3、个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为()ABCD6、某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率表格如下,则符合这一结果的试验最有可能的是( ) 次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40A掷一枚质地均匀的骰子,向上面的点数是“5”B掷一枚一元的硬币,正面朝上C不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是

4、57、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A掷一枚正六面体的骰子,出现1点的概率B一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C抛一枚硬币,出现正面的概率D任意写一个整数,它能被2整除的概率8、盒子中装有形状、大小完全相同的3个小球,球上分别标有数字1,1,2,从中随机取出一个,其上的数字记为k1放回后再取一次,其上的数记为k2,则一次函数yk1x+b与第一象限内y的增减性一致的概率为()ABCD9、由三个正方形彼此嵌套组成一个如图所示的图案,其中每个内层正方形的顶点都是其外层正方形边的中

5、点将一个飞镖随机投掷到该图案上,则飞镖落在阴影区域的概率是( ) ABCD10、掷一个骰子时,点数小于2的概率是( )ABCD0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任意翻一下2021年日历,翻出1月6日的概率为_;翻出4月31日的概率为_2、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是_3、一个不透明的盒子里有9个黄球和若干个红球,红球和黄球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在

6、30%,那么估计盒子中红球的个数为_4、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率_5、如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是_三、解答题(5小题,每小题10分,共计50分)1、一个纸箱内装有三张正面分别标有数字4,6,4的卡片,卡片除正面数字外其他均相同将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字请用列表法或画树状图法求两次取得数字的绝对值相等的概率2、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球

7、2个,蓝球1个,现在从中任意摸出一个红球的概率为(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率3、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是_;(3)从这副扑克牌中取出两组牌

8、,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢你认为这个游戏对双方是公平的吗若不是,有利于谁请你用概率知识(列表或画树状图)加以分析说明4、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀(1)若从中任取一个球,球上的汉字刚好是“书”的概率为 ;(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率5、在6张卡片上分别写有16的整数,随机抽取1张

9、放回,再随机抽取1张(1)求第二次取出的数字小于第一次取出的数字的概率(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率-参考答案-一、单选题1、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n12经检验:n12是方程的解故选B【点睛】本题主要考查了概率公式的应用,准确计算是解题的关键2、B【分析】先利用列表法展示所有6种可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解【详解】解:列表如下:左中右小亮小莹大刚小亮大刚小莹小莹小亮大刚大刚小亮小莹小莹大刚小亮大刚小莹小亮,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的

10、概率=故选B【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,解题关键是掌握利用列表法与树状图法求概率3、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图4、B【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面

11、积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高5、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的

12、有4种结果,直接根据概率公式求解即可【详解】解:装有7个只有颜色不同的球,其中4个黑球,从布袋中随机摸出一个球,摸出的球是黑球的概率故选:C【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键6、C【分析】根据利用频率估计概率得到实验的概率在左右,再分别计算出四个选项中的概率,然后进行对比判断即可【详解】解:、掷一个质地均匀的骰子,向上的面点数是“5”的概率为:,不符合题意;B、抛一枚硬币,出现正面朝上的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是,符合题意;D、三

13、张扑克牌,分别是、,背面朝上洗均后,随机抽出一张是5的概率为,不符合题意故选:C【点睛】本题考查了利用频率估计概率:大数次重复实验时,事件发生的频率在某个固定位置左右波动,并且波动的幅度越来越小,根据这个稳定的频率的值,可以用估计概率,这个固定的近似值就是这个事件的概率,当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率7、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个

14、白球和1个红球,从中任取一个球,则取到红球的概率0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式8、B【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为,放回后再取一次,其上的数记为,则共有9种情况,分别为:(-1,-1

15、),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),一次函数yk1x+b与第一象限内y的增减性一致的有:(-1,1),(-1,2),一次函数yk1x+b与第一象限内y的增减性一致的概率为故选B【点睛】此题考查概率计算公式,判断一次函数与反比例函数的增减性,解题关键在于列出所有可能出现的情况9、B【分析】设大正方形的边长为,求得空白区域的面积占整个面积的比,进而可得镖落在阴影区域的概率【详解】解:设大正方形的边长为,则中间正方形的边长为,小正方形的边长为,整个区域的面积为,空白区域的面积为则空白区域占,故镖落在空白区域的概率等于则镖落在阴影

16、区域的概率= ,故选:B【点睛】此题考查了概率的有关计算,掌握概率的计算方法并求得空白区域所占的比重是解题的关键10、A【分析】让骰子里小于2的数的个数除以数的总数即为所求的概率【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是故选:A【点睛】本题考查了概率公式的应用,解题的关键是注意概率所求情况数与总情况数之比二、填空题1、 0 【分析】根据概率的公式,即可求解【详解】解:2021年共有365天,翻出1月6日的概率为 ,2021年4月没有31日,翻出4月31日的概率为0故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公

17、式是解题的关键2、【分析】设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,求出活到25岁的数量与活到20岁的数量的比值,即可求解【详解】解:设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,现年20岁的这种动物活到25岁的概率是 故答案为:【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键3、21【分析】设盒子中红球的个数为n个,根据利用频率估计概率得到摸到黄球的概率为30%,再根据概率公式计算即可;【详解】设盒子中红球的个数为n个,根据题意得,解得:,经检验,是分式方程的解,盒子中红球的个数为21个故答案是21【点睛】本题主要

18、考查了利用频率估计概率,概率公式的应用,准确计算是解题的关键4、【分析】利用概率公式直接求解即可【详解】解:袋中有形状材料均相同的白球2个, 红球4个,共6个球, 任意摸一个球是红球的概率 故答案为:【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、【分析】由题意根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:如图假设围棋盘上两个格子的格点分别为,白球在网格上有6种摆放方法,两棋子不在同一条格线上的摆放记为(白,黑)共有12种摆放方法,其中,恰好摆放成如图所示位

19、置的情况只有1种,故概率为:.故答案为:【点睛】本题考查概率的求法.注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=三、解答题1、画树状图见解析,P两次取得数字的绝对值相等【分析】先列出树状图得到所有的等可能性的结果数,然后找到两次取得数字的绝对值相等的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数,当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等,由树状图可知两次取得数字的绝对值相等的结果数有5种,P两次取得数字的绝对值相等【点睛】本题主要考查了用列

20、表法或树状图法求解概率,解题的关键在于能够熟练掌握列表法或树状图法求解概率2、(1)袋中黄球的个数为1个;(2)【分析】(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可;【详解】解:(1)设袋中黄球的个数为x个,根据题意得,解得x1,经检验,x1是方程的根,所以袋中黄球的个数为1个;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,所以两次摸出的都是红球的概率【点睛】本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是

21、解题的关键3、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数总数频率,频率频数总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论【分析】解:(1)由题意得:,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.25

22、30.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下:红桃123方块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,乙方赢甲方赢,这个游戏对双方是不公平的,有利于乙方【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解4、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图计算即可;【详解】(1)由题可得,球上的汉字刚好是“书”的概率为;故答案是:;(2)根据题意画出树状图如下:则取出的两个球上的汉字能组成“

23、华一”的概率为【点睛】本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键5、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有16的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,第二次取出的数字小于第一次取出的数字的概率是;(2)设计:在6张卡片上分别写有16的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁