《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试题(无超纲).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().ABCD
2、12、经过某十字路口的汽车,可能直行,也可能向左转或向右转如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )ABCD3、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有()A16个B8个C4个D2个4、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆
3、心角是108,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )A0.2B0.3C0.4D0.55、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签的办法确定一个小组进行展示活动,则第2小组被抽到的概率是( )ABCD6、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD7、在“3,2,1,0,1,2,3”七个数中,任取一个数等于a,恰好使方程(a21)x2+(a+2)x+a30是一元二次方程的概率是()ABCD18、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除
4、颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是( )A10B12C13D149、从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A”的概率相同的是()A抽到“大王”B抽到“红桃”C抽到“小王”D抽到“K”10、一个不透明的口袋中,装有红球5个,黑球4个,白球11个,这些球除颜色不同外没有任何区别,现从中任意摸出一个球,恰好是黑球的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的
5、倍数就得奖,顾客得奖概率是_2、已如一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率_3、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是_4、一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出1个球,则摸到一个红球的概率为_5、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _个红球三、解答题(5小题,每小题10分
6、,共计50分)1、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a ,b ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组
7、合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率2、一个不透明的盒子中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)从盒子里随机摸出一个小球,其中标号是奇数的概率是 ;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,请用列表法或树状图法求两次摸出的小球标号的和小于5的概率;(3)从盒子中随机同时摸出两个小球,则摸出的小球标号的和大于4的概率是 3、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树
8、状图或列表法求两次摸出的都是红球的概率4、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数5、 “每天锻炼一小时,健康生活一辈子”,为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如表:成绩/分78910人数/人2544(1)从这15名领操员中随机抽取1人,得分在9分以上(包括9分)的概率是 ;(2)已知获得10分的4位选手中,七、八、九年级各有1人、2人、1人,学校准备从中抽取
9、两人领操,请用画树状图或列表格的方法,求抽到八年级两名领操员的概率-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:13=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概
10、率公式计算可得【详解】画“树形图”如图所示:这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,一辆向右转,一辆向左转的概率为;故选【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率所求情况数与总情况数之比求解3、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可【详解】解:摸球800次红球出现了160次,摸到红球的概率约为,20个球中有白球204个,故选:C【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键4、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状
11、态稳定【详解】解:“陆地”部分对应的圆心角是108,“陆地”部分占地球总面积的比例为:108360,宇宙中一块陨石落在地球上,落在陆地的概率是0.3,故选B【点睛】此题主要考查了几何概率,以及扇形统计图用到的知识点为:概率=相应的面积与总面积之比5、B【分析】根据概率是所求情况数与总情况数之比,可得答案【详解】解:第3个小组被抽到的概率是,故选:B【点睛】本题考查了概率的知识用到的知识点为:概率所求情况数与总情况数之比6、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,
12、共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键7、C【分析】根据一元二次方程的定义求出方程(a21)x2+(a+2)x+a30是一元二次方程时a的取值范围,进而再根据概率的意义进行计算即可【详解】解:当a210,即a1时,方程(a21)x2+(a+2)x+a30是一元二次方程,在“3,2,1,0,1,2,3”七个数中有5个数使方程(a21)x2+(a+2)x+a30是一元二次方程,恰好使方程(a21)x2+(a+2)x
13、+a30是一元二次方程的概率是故选:C【点睛】本题考查了一元二次方程的定义和概率的意义,熟练掌握各定义是解决本题的关键8、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n12经检验:n12是方程的解故选B【点睛】本题主要考查了概率公式的应用,准确计算是解题的关键9、D【分析】抽到“A”的概率为,只要计算四个选项中的概率,即可得到答案【详解】抽到“A”的概率为,而抽到“大王”与抽到“小王”的概率均为,抽到“红桃”的概率为,抽到“K”的概率为,即抽到“K”的概率与抽到“A”的概率相等故选:D【点睛】本题考查了简单事件的概率,根据概率计算公式,要知道所有可能结果数,及事件发生的
14、结果数,即可求得事件的概率10、A【分析】根据题意可得共有20个小球,即可得出任意摸出一个小球,共有20种等可能结果,其中恰好是黑球的有4种结果,即可求出概率【详解】解:由题意得,袋中装有红球5个,黑球4个,白球11个,任意摸出一个球,恰好是黑球的概率是故选:A【点睛】本题考查了求概率的方法,熟知概率公式是解题关键二、填空题1、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解2、
15、【分析】先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可【详解】解:往口袋中再放入2个白球,此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,从口袋中随机取出一个白球的概率P=,故答案为:【点睛】本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键3、【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率【详解】第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状
16、图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种则小明正好穿的是相同的一双袜子的概率是故答案为:【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率4、【分析】结合题意,根据概率公式的性质计算,即可得到答案【详解】2个红球,1个白球,1个黑球中随机摸出1个球,则摸到一个红球的概率为: 故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握利用概率公式计算概率的性质,从而完成求解5、21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟
17、练【详解】解:小明通过多次试验发现,摸出白球的频率稳定在0.3左右,白球的个数=300.3=9个,红球的个数=30-9=21个,故答案为:21【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率三、解答题1、(1)16,17.5;(2)90;(3)【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解【详解】解:(1)a512.5%40%16,512.5%7b%,
18、b17.5,故答案为:16,17.5;(2)6006(512.5%)90(人),故答案为:90;(3)如图,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,则P(恰好选到一男一女)【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键2、(1);(2);(3)【分析】(1)根据概率的意义,共有4种等可能出现的结果情况,其中标号为奇数的有2种,可求出相应的概率;(2)用列表法表示先摸出一个小球放回后再随机摸出一个小球,所有可能出现的结果情况,得出两次摸出的小球标号的和小于5的结果数,进而求出概率;(3)首先根
19、据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案【详解】解:(1)从标号为1、2、3、4的小球中,随机摸出一球,共有4种等可能出现的结果情况,其中标号为奇数的有2种,所以随机摸出一个小球,其标号是奇数的概率是,故答案为:;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,所有可能出现的结果情况如下:共有16种等可能出现的结果,其中两次摸出的小球标号的和小于5的有6种,所以P两次摸出的小球标号的和小于5=,故答案为:;(3)随机同时摸出两个小球,所有可能出现的结果情况如下:共有12种等可能出现的结果,其中两次摸出的小球标
20、号的和大于4的有8种,所以P两次摸出的小球标号的和大于4=【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键3、(1)袋中黄球的个数为1个;(2)【分析】(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可;【详解】解:(1)设袋中黄球的个数为x个,根据题意得,解得x1,经检验,x1是方程的根,所以袋中黄球的个数为1个;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,所以两次摸出的都是红球
21、的概率【点睛】本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键4、(1);(2)4【分析】(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率;(2)设放入袋中的黑球的个数为x,根据题意得解得x4,所以放入袋中的黑球的个数为4【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是
22、熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比5、(1);(2)【分析】(1)由于总人数为15人,9分以上的人为8人,由此可知得分在9分以上(包括9分)的概率是;(2)可以利用树状图进行解题即可【详解】解:(1)共有15名领操员,得分在9分(包括9分)以上的领操员有8名,得分在9分(包括9分)以上的概率是;(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好抽到八年级两名领操员的有2中结果,则恰好抽到八年级两名领操员的概率为=【点睛】本题主要考查概率的计算,准确找出事件的相关数量,并会利用树状图或表格进行分析是解题的关键