《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用综合训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用综合训练试题(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,
2、通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A18B27C36D302、布袋中装有2个红球、3个白球、5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是( )ABCD3、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()ABCD14、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为( )A0.1B0.2C0.9D0.85、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000
3、150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD6、如图,
4、正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )ABCD7、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD8、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD9、一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为()A35个B60个C70个D130个10、同时抛掷两枚质地均匀的
5、硬币,两枚硬币全部正面向上的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_2、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分
6、析可以推断“摸出黑球”的概率约为_3、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):射击的次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率0.760.830.780.790.800.80根据试验所得数据,估计“射中9环以上”的概率是 _4、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是_5、不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他差别从袋子中随机摸出1个球,摸出红球的概率是 _ 三、解答题(5小题,每小题10分,
7、共计50分)1、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想2、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回甲两次摸到红球获胜,乙摸到一红一白或二白获胜
8、,你认为游戏对双方公平吗?请说明理由3、邮票素有“国家名片”之称,方寸之间,包罗万象为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是_;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率4、一个不透明的盒子中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)从盒子里随机摸出一个小球,其中标号
9、是奇数的概率是 ;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,请用列表法或树状图法求两次摸出的小球标号的和小于5的概率;(3)从盒子中随机同时摸出两个小球,则摸出的小球标号的和大于4的概率是 5、为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示请根据图表信息解答下列问题:组别分数段(分)频数频率A组60x70300.1B组70x8090nC组80x90m0.4D组90x100600.2(1)在表中:m ,n ;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组
10、;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明-参考答案-一、单选题1、D【分析】设黑球的个数为x个,根据频率可列出方程,解方程即可求得x,从而得到答案【详解】设黑球的个数为x个,由题意得:解得:x=30经检验x=30是原方程的解则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键2、A【分析】一般地,对于一件事情,所有可能出现的结果数为 其中满足某个条件的事件A出现的结果数为 那么事件A发生的概率为: 根据概率公式直接计算即可.【详解】解:布袋中装有2个红球,3个白球,5
11、个黑球,共10个球,从袋中任意摸出一个球共有10种结果,其中出现白球的情况有3种可能,从袋中任意摸出一个球是白球的概率是故选:A【点睛】本题考查的是简单随机事件的概率,掌握“简单随机事件的概率公式”是解题的关键.3、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心
12、对称图形的识别,列举法求概率是解题关键4、D【分析】利用成活的树的数量总数即可得解【详解】解:800010000=0.8,故选:D【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率5、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频
13、率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答6、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1
14、,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:故选:B【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)7、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图8、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为
15、8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图9、C【分析】根据大量重复试验后频率的稳定值即为概率,进行求解即可【详解】解:一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,红球的个数=20035%=70个,故选C【点睛】本题主要考查了用频率估计概率,解题的关键在于能够熟练掌握大量重复试验下,频率的稳定值即为概率10、A【分析】首先利用列
16、举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比二、填空题1、【分析】可根据“黑球数量黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估计概率,大量反复试验
17、下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比2、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率3、0.8【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8故
18、答案为:0.8【点睛】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率4、【分析】设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,求出活到25岁的数量与活到20岁的数量的比值,即可求解【详解】解:设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,现年20岁的这种动物活到25岁的概率是 故答案为:【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键5、【分析】先确定事件的所有等可能性,再确定被求事件的等可能性,根据概率计算公式
19、计算即可【详解】事件的所有等可能性有1+2=3种,摸出红球事件的等可能性有1种,摸出红球的概率是,故答案为:【点睛】本题考查了简单概率的计算,熟练掌握概率计算公式是解题的关键三、解答题1、,验证过程见解析【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案【详解】活动1:红球1红球2白球红球1(红1,红2)(红1,白)红球2(红2,红1)(红2,白)白球(白,红1)(白,红2)共有6种等可能的结果,摸到两个红球的有2种情况,摸出的两个球都是红球的概率记为活动2:红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,
20、白)白球(白,红1)(白,红2)(白,白)共有9种等可能的结果,摸到两个红球的有4种情况,摸出的两个球都是红球的概率记为【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比重点需要注意球放回与不放回的区别2、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:这个游戏对双方是不公平的如图,一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平【点睛】
21、本题考查的是游戏的公平性解决本题需要正确画出树状图进行解题用到的知识点为:概率=所求情况数与总情况数之比3、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算【详解】(1)事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票方法一:由题意画出树状图由树状图可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或方法二:由题意列表第二枚第一枚由表可知,所有可能出现的结果共有1
22、2种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或 【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键4、(1);(2);(3)【分析】(1)根据概率的意义,共有4种等可能出现的结果情况,其中标号为奇数的有2种,可求出相应的概率;(2)用列表法表示先摸出一个小球放回后再随机摸出一个小球,所有可能出现的结果情况,得出两次摸出的小球标号的和小于5的结果数,进而求出概率;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案【详解】解
23、:(1)从标号为1、2、3、4的小球中,随机摸出一球,共有4种等可能出现的结果情况,其中标号为奇数的有2种,所以随机摸出一个小球,其标号是奇数的概率是,故答案为:;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,所有可能出现的结果情况如下:共有16种等可能出现的结果,其中两次摸出的小球标号的和小于5的有6种,所以P两次摸出的小球标号的和小于5=,故答案为:;(3)随机同时摸出两个小球,所有可能出现的结果情况如下:共有12种等可能出现的结果,其中两次摸出的小球标号的和大于4的有8种,所以P两次摸出的小球标号的和大于4=【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所
24、有可能出现的结果情况是正确解答的关键5、(1)120,0.3;(2)见解析;(3)C;(4) 【分析】(1)先根据A组频数及其频率求得总人数,再根据频率频数总人数可得m、n的值;(2)根据(1)中所求结果即可补全频数分布直方图;(3)根据中位数的定义即可求解;(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得【详解】解:(1)本次调查的总人数为300.1300(人),m3000.4120,n903000.3,故答案为:120,0.3;(2)补全频数分布直方图如下:(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,而第150、151个数据的平均数均落在C组,据此推断他的成绩在C组,故答案为:C;(4)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A、C两组同学的有2种结果,抽中A、C两组同学的概率为【点睛】本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息