2021-2022学年人教版八年级数学下册第十八章-平行四边形同步测评试题(精选).docx

上传人:可**** 文档编号:57395796 上传时间:2022-11-04 格式:DOCX 页数:31 大小:776.39KB
返回 下载 相关 举报
2021-2022学年人教版八年级数学下册第十八章-平行四边形同步测评试题(精选).docx_第1页
第1页 / 共31页
2021-2022学年人教版八年级数学下册第十八章-平行四边形同步测评试题(精选).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2021-2022学年人教版八年级数学下册第十八章-平行四边形同步测评试题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形同步测评试题(精选).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十八章-平行四边形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D132、如图,

2、DE是ABC的中位线,点F在DE上,且AFB90,若AB5,BC8,则EF的长为( )A2.5B1.5C4D53、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D44、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD5、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D86、如图,矩形ABCD中,AB3,AD4,将矩形ABCD折叠后,A点的对应点落在CD边上,EF为折痕,A和EF

3、交于G点,当AG+BG取最小值时,此时EF的值为()AB3C2D57、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m128、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D59、如图,下列条件中,能使平行四边形ABCD成为菱形的是( )ABCD10、如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为( )A2BC4D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在矩形中,将沿对角线AC翻折,点B落在点E处,连接,则的长为_2、已知

4、正方形ABCD的一条对角线长为2,则它的面积是_3、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离若量得DE=15m,则A、B之间的距离为_m4、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm三、解答题(5小题,每小题10分,共计50分)1、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一

5、个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值2、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长3、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每

6、秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标4、如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PFAE交BC于点F(1)求证:PAPF;(2)如图2,过点F作FQBD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由5、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接

7、两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , -参考答案-一、单选题1、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键2、B【解析】【分析】根据直角三角形

8、斜边上的中线等于斜边的一半可得,再利用三角形中位线定理可得DE4,进而可得答案【详解】解:D为AB中点,AFB90,AB5,DE是ABC的中位线,BC8,DE4,EF42.51.5,故选:B【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半3、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段

9、AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键4、B【解析】【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B

10、,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90,B=30,BAC=90-30=60,AD平分BAC,DAB=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键5、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA

11、,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键6、A【解析】【分析】过点作于,由翻折的性质知点为的中点,则为的中位线,可知在上运动,当取最小值时,此时与重合,利用勾股定理和相似求出的长即可解决问题【详解】解:过点作于,将矩形折叠后,点的对应点落在边上,点为的中点,为的中位线,在上运动,在上运动,当取最小值时,此时与重合,在和中,故选:A【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,勾股定理等知识,解题的关键是证

12、明在上运动7、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键8、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中

13、线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质9、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可【详解】解:A、ABCD中,本来就有AB=CD,故本选项错误;B、ABCD中本来就有AD=BC,故本选项错误;C、ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定ABCD是菱形,故本选项正确;D、ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形,故本选项错误故选:C【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:有一组邻边相等的平行四边形是菱形,四条边都相等的四边形是菱形,

14、对角线互相垂直的平行四边形是菱形10、D【解析】【分析】根据菱形及矩形的性质可得到BAC的度数,从而根据直角三角形的性质求得BC的长【详解】解:四边形AECF为菱形,FCO=ECO,EC=AE,由折叠的性质可知,ECO=BCE,又FCO+ECO+BCE=90,FCO=ECO=BCE=30,在RtEBC中,EC=2EB,又EC=AE,AB=AE+EB=6,EB=2,EC=4,RtBCE中,故选:D【点睛】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30的直角三角形中各边之间的关系求得BC的长二、填空题1、【解析】【分析】过点E作EFAD于点F,先

15、证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解【详解】解:如图所示:过点E作EFAD于点F,有折叠的性质可知:ACB=ACE,ADBC,ACB=CAD,CAD=ACE,CG=AG,设CG=x,则DG=8-x,在中,x=5,AG=5,在中,EG=,EFAD,AEG=90,在中,、DF=8-=,在中,故答案是:【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键2、6【解析】【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长

16、为2, 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.3、30【解析】【分析】根据三角形中位线的性质解答即可【详解】解:点D,E分别是AC,BC的中点,DE是ABC的中位线,AB=2DE=30m故填30【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键4、4【解析】【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM

17、2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并

18、求出ME2+FM2的值是解答此题的关键5、8【解析】【分析】运用三角形的中位线的知识解答即可【详解】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键三、解答题1、(1);(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点N,则

19、被分为9个面积相等的等腰直角三角形,即可得出【详解】解:(1);(2)证明;由题意得,在正方形ABCD中,在和中;证明:;由题意得,在正方形HIJK中,AC为正方形ABCD的对角线,在和中,;证明:由题意得,在正方形EBFG中,AC为正方形ABCD的对角线,在和中,;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点N,则被分为9个面积相等的等腰直角三角形,【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键2、(1)见解析;(2)2【分析】(

20、1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(

21、AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键3、(1)3秒后平行于轴;(2)或【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分点在点右侧,点在点左侧两种情况,分别根据建立方程,解方程即可得【详解】解:(1),设秒后平行于轴,垂直于轴,垂直于轴,平行于轴,四边形是矩形,即,解得,即3秒后平行于轴;(2)由题意得:经过秒后,垂直于轴,点在直线上,且点的坐标为,点的纵坐标为4,当点在点右侧时,由得:,解得,此时点的坐标为;当点在点左侧时,由得:,解

22、得,此时点的坐标为;综上,点的坐标为或【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键4、(1)见解析;(2)PQ的长不变,见解析;(3)AB+BFPB【分析】(1)连接PC,由正方形的性质得到,然后依据全等三角形的判定定理证明,由全等三角形的性质可知,接下来利用四边形的内角和为360可证明,于是得到,故此可证明;(2)连接AC交BD于点O,依据正方形的性质可知为等腰直角三角形,于是可求得AO的长,接下来,证明,依据全等三角形的性质可得到;(3)过点P作,垂足分别为M,N,首先证明为等腰直角三角形于是得到,由角平分线的性质可得到,然后再依据

23、直角三角形全等的证明方法证明可得到,于是将可转化为的长【详解】解:(1)证明:连接PC,如图所示:ABCD为正方形,在和中,;(2)PQ的长不变理由:连接AC交BD于点O,如图所示:,又四边形ABCD为正方形,在和中,;(3)如图所示:过点P作,垂足分别为M,N四边形ABCD为正方形,BD平分,在和中,【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,勾股定理解三角形,等腰三角形的性质等,理解题意,作出相应辅助线,综合运用这些性质定理是解题关键5、(1),2,;(2)4或5【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意得:a=,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求菱形ABCD的面积为=42=4或菱形ABCD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁