二次函数中考压轴题专项训练.docx

上传人:asd****56 文档编号:57142425 上传时间:2022-11-03 格式:DOCX 页数:44 大小:3.08MB
返回 下载 相关 举报
二次函数中考压轴题专项训练.docx_第1页
第1页 / 共44页
二次函数中考压轴题专项训练.docx_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《二次函数中考压轴题专项训练.docx》由会员分享,可在线阅读,更多相关《二次函数中考压轴题专项训练.docx(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.(1)直接写出ABE、CBD的度数,并求折痕BD所在直线的函数解析式;(2)过F点作FGx轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式;(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PNBC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM

2、MN成立的x的取值范围。2已知实数的最大值为 已知二次函数的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;(3)若的取值范围.(4题图) 4.如图,两条抛物线、与分别经过点,且平行于轴的两条平行线围成的阴影部分的面积为 8 6 10 4yxO(第5题)5.如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为( ) A3 B1 C5

3、D8 6.如图,已知抛物线的顶点坐(6题图)标为Q,且与轴交于点C,与轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD轴,交AC于点D(1)求该抛物线的函数关系式;(2)当ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由(第7题)H7如图,RtABC中,C=90,BC=6,AC=8点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ点D,E分别是点A,

4、B以Q,P为对称中心的对称点, HQAB于Q,交AC于点H当点E到达顶点A时,P,Q同时停止运动设BP的长为x,HDE的面积为y(1)求证:DHQABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,HDE为等腰三角形?8如图10,在平面直角坐标系中,点A的坐标为(1,) ,AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;xyA0B(3)在(2)中抛物线的对称轴上是否存在点C,使AOC的周长最小?若存在,求出点C的 坐标;若不存在,请说明理由; (4)在(2)中,轴下方的抛物线上是否存在一点P,过点P作轴的垂线,交直线AB于点D,线段OD把AOB分

5、成两个三角形.使其中一个三角形面积与图8四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.9将抛物线绕它的顶点旋转180,所得抛物线的解析式是( ) A BC D10如图,已知正方形ABCD的边长为4 ,E是BC边上的一个动点,AEEF, EF交DC于F, 设BE=,FC=,则当点E从点B运动到点C时,关于的函数图象是( )A B C D11.(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线的最大值是多少?(2)将矩形ABCD以

6、每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0t3),直线AB与该抛物线的交点为N(如图2所示). 当时,判断点P是否在直线ME上,并说明理由; 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由图1 第11题图 图212.如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=设直线AC与直线x=4交于点E(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;本试卷由无锡市天一实验学校金杨建录制

7、 QQ:623300747转载请注明!(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求CMN面积的最大值O第13题yPx13如图,已知P的半径为2,圆心P在抛物线yx21上运动,当P与x轴相切时,圆心P的坐标为_14(2010年长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,b),其中且、为实数(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1x2 |的范围15(2010年长沙)如图,在平面直角坐标系中,矩形OABC的两边分别

8、在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当OPQ与PAB和QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比BAPxCQOy第15题图16.已知:如图一次函数yx1的图象与x轴交于点A,与y轴交于点B;二次函数yx2bxc的图象与一次函

9、数yx1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由第16题图17. 如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 第17题图(1)图(2)18在平面直角坐标系中

10、,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?19如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直

11、线上(1)求抛物线对应的函数关系式;(2)若DCE是由ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N设点M的横坐标为t,MN的长度为l求l与t之间的函数关系式,并求l取最大值时,点M的坐标20. 在平面直角坐标系xOy中,拋物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条拋物线上。 (1) 求点B的坐标; (2) 点P在线段OA上,从O点出发向点运动,过P点作x轴的 垂线,与直线OB交于点E。延长PE到点D。使得E

12、D=PE。 以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动 时,C点、D点也随之运动)j 当等腰直角三角形PCD的顶点C落在此拋物线上时,求 OP的长;k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。21。图9是

13、二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标; (2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.图9图122如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1)(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,

14、使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由23、(2010年杭州市) 定义为函数的特征数, 下面给出特征数为 2m,1 m , 1 m 的函数的一些结论: 当m = 3时,函数图象的顶点坐标是(,); 当m 0时,函数图象截x轴所得的线段长度大于; 当m 时,y随x的增大而减小; 当m 0时,函数图象经过同一个点.其中正确的结论有A. B. C. D. 24如图,在平面直角坐标系中,抛物线A(-1,0),B(3,0)C(0,-1)三点。(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形求所有满足条件点P的坐标。25.在

15、平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为.()若,求此时抛物线顶点的坐标;()将()中的抛物线向下平移,若平移后,在四边形ABEC中满足 SBCE = SABC,求此时直线的解析式;()将()中的抛物线作适当的平移,若平移后,在四边形ABEC中满足SBCE = 2SAOC,且顶点恰好落在直线上,求此时抛物线的解析式.26.如图,在梯形ABCD中,ADBC,B90,BC6,AD3,DCB30.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边EFG设E点移动距离为x(x0).EFG的边长

16、是_(用含有x的代数式表示),当x2时,点G的位置在_;若EFG与梯形ABCD重叠部分面积是y,求当0x2时,y与x之间的函数关系式;当2x6时,y与x之间的函数关系式;B E F CA DG探求中得到的函数y在x取含何值时,存在最大值,并求出最大值.27.某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程平均速度时间);(3)如图b,直线xt(0t

17、135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系. 图a图b28. (15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.29.如图所示,抛物线与x轴交于A、B两点,直线BD

18、的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E求A、B、C三个点的坐标点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN求证:AN=BMDCMNOABPl第29题图yE在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.30在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作M,在(1)中的抛物线上是否存在这样的点P,过点P作

19、M的切线l ,且l与x轴的夹角为30,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号) 31将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0)(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标;24题图(3)在第一象限内的该抛物线上是否存在点G,使AGC的面积与(2)中APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由xyOABCPQMN第23题图32.已知

20、二次函数的图象经过点A(3,0),B(2,-3),C(0,-3)(1)求此函数的解析式及图象的对称轴;(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动设运动时间为t秒当t为何值时,四边形ABPQ为等腰梯形;设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值33.如图,已知二次函数的图像与轴相交于点A、C,与轴相较于点B,A(),且AOBBOC.(1)求C点坐标、AB

21、C的度数及二次函数的关系是;(2)在线段AC上是否存在点M().使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出的值;若不存在,请说明理由.34.已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上ACB = EDF = 90,DEF = 45,AC = 8 cm,BC = 6 cm,EF = 9 cm如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CB向ABC匀速移动,在DEF移动的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当DEF的顶点

22、D移动到AC边上时,DEF停止移动,点P也随之停止移动DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0t4.5)解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由ADBCF(E)图(1)ADBCFE图(2)PQ(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由(图(3)供同学们做题使用)(第35题图)xyOACBDEF35. (莱芜)如图,在平面直角坐标系中,已知抛物线

23、交轴于两点,交轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作D与x轴相切,D交轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得PGA的面积被直线AC分为12两部分.36(2010,浙江义乌)(1)将抛物线y12x2向右平移2个单位,得到抛物线y2的图象,则y2 ; (2)如图,P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点A、B若ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t Pyx37(2010,安徽芜湖)如图,在平面直角

24、坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(3,1)、C(3,0)、O(0,0)将此矩形沿着过E(,1)、F(,0)的直线EF向右下方翻折,B、C的对应点分别为B、C(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得PBC周长最小?如能,求出点P的坐标;若不能,说明理由38.如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1

25、、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示,并求出当S36时点A1的坐标;(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 CBAOyx图1D

26、M图2O1A1OyxB1C1DMCEDGAxyOBF39如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(4,0)、B(2,0),与y轴交于点C,顶点为DE(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,EFK的面积最大?并求出最大面积1(14分)(1)A、D关于点Q成中心对称,HQAB,=90,HD=HA,3分(图1)(图2)DHQABC 1分(2)如图1,当时, ED=,QH=,

27、此时 3分当时,最大值如图2,当时,ED=,QH=,此时 2分当时,最大值y与x之间的函数解析式为y的最大值是1分(3)如图1,当时,若DE=DH,DH=AH=, DE=,=,显然ED=EH,HD=HE不可能; 1分如图2,当时,若DE=DH,=,; 1分若HD=HE,此时点D,E分别与点B,A重合,; 1分若ED=EH,则EDHHDA, 1分当x的值为时,HDE是等腰三角形.8.解:(1)由题意得: B(2,0) 3分 (2)设抛物线的解析式为y=ax(x+2),代入点A(1, ),得, 6分CABOyx(3)存在点C.过点A作AF垂直于x轴于点F,抛物线的对称轴x= - 1交x轴于点E.当

28、点C位于对称轴与线段AB的交点时,AOC的周长最小. BCEBAF, 9分 (4)存在. 如图,设p(x,y),直线AB为y=kx+b,则 , 直线AB为, = |OB|YP|+|OB|YD|=|YP|+|YD| =.SAOD= SAOB-SBOD =-2x+=-x+. yxAODBP=. x1=- , x2=1(舍去).p(-,-) .又SBOD =x+, = .x1=- , x2=-2.P(-2,0),不符合题意. 存在,点P坐标是(-,-). 12分9D10A11. (本题满分11分) 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)故可得c=0,b=4所以抛物线的解析式为1分

29、由得当x=2时,该抛物线的最大值是4. 2分(2) 点P不在直线ME上. 已知M点的坐标为(2,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+b.于是得 ,解得所以直线ME的关系式为y=-2x+8. 3分由已知条件易得,当时,OA=AP=,4分 P点的坐标不满足直线ME的关系式y=-2x+8. 来源:Zxxk.Com 当时,点P不在直线ME上. 5分以P、N、C、D为顶点的多边形面积可能为5 点A在x轴的非负半轴上,且N在抛物线上, OA=AP=t. 点P,N的坐标分别为(t,t)、(t,-t 2+4t) 6分 AN=-t 2+4t (0t3) , AN-AP=(-t 2+4 t

30、)- t=-t 2+3 t=t(3-t)0 , PN=-t 2+3 t 7分()当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, S=DCAD=32=3. ()当PN0时,以点P,N,C,D为顶点的多边形是四边形 PNCD,ADCD, S=(CD+PN)AD=3+(-t 2+3 t)2=-t 2+3 t+38分当-t 2+3 t+3=5时,解得t=1、29分 而1、2都在0t3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)10分当t=2时,此时

31、N点的坐标(2,4)11分说明:()中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(),只有()也可以,不扣分)12解:(1)点C的坐标设抛物线的函数关系式为,则,解得所求抛物线的函数关系式为设直线AC的函数关系式为则,解得直线AC的函数关系式为,点E的坐标为把x=4代入式,得,此抛物线过E点(2)(1)中抛物线与x轴的另一个交点为N(8,0),设M(x,y),过M作MGx轴于G,则SCMN=SMNG+S梯形MGBCSCBN=当x=5时,SCMN有最大值1314.解:(1)一次函数过原点设一次函数的解析式为y=kx一次函数过(1,b) y=bx 3分(2)y=ax2+bx2过(1,0)

32、即a+b=2 4分由得 5分 方程有两个不相等的实数根方程组有两组不同的解两函数有两个不同的交点 6分(3)两交点的横坐标x1、x2分别是方程的解 或由求根公式得出 8分ab0,a+b=2 2a1令函数 在1a2时y随a增大而减小 9分 10分15解:(1) CQt,OP=t,CO=8 OQ=8tSOPQ(0t8) 3分(2) S四边形OPBQS矩形ABCDSPABSCBQ32 5分四边形OPBQ的面积为一个定值,且等于32 6分(3)当OPQ与PAB和QPB相似时, QPB必须是一个直角三角形,依题意只能是QPB90 又BQ与AO不平行 QPO不可能等于PQB,APB不可能等于PBQ根据相似

33、三角形的对应关系只能是OPQPBQABP 7分解得:t4 经检验:t4是方程的解且符合题意(从边长关系和速度)此时P(,0)B(,8)且抛物线经过B、P两点,抛物线是,直线BP是: 8分设M(m, )、N(m,) M在BP上运动 与交于P、B两点且抛物线的顶点是P当时, 9分 当时,MN有最大值是2设MN与BQ交于H 点则、SBHMSBHM :S五边形QOPMH3:29当MN取最大值时两部分面积之比是3:29 10分16解:(1)将B(0,1),D(1,0)的坐标代入yx2bxc得得解析式yx2x13分(2)设C(x0,y0),则有解得C(4,3)6分由图可知:SSACESABD又由对称轴为x

34、可知E(2,0)SAEy0ADOB43318分(3)设符合条件的点P存在,令P(a,0):第24题图当P为直角顶点时,如图:过C作CFx轴于FRtBOPRtPFC,即整理得a24a30解得a1或a3所求的点P的坐标为(1,0)或(3,0)综上所述:满足条件的点P共有二个12分17. (1)将x=0,代入抛物线解析式,得点A的坐标为(0,4).2分(2)当b0时,直线为,由解得, 所以B、C的坐标分别为(2,2),(2,2) ,所以(利用同底等高说明面积相等亦可) .4分当时,仍有成立. 理由如下由,解得, 所以B、C的坐标分别为(,+b),(,+b),作轴,轴,垂足分别为F、G,则,而和是同底

35、的两个三角形,所以. .6分(3)存在这样的b.因为所以所以,即E为BC的中点所以当OE=CE时,为直角三角形 .8分因为所以 ,而所以,解得,所以当b4或2时,OBC为直角三角形. 18. (1)解:(1)沿轴向下平移3个单位后恰好经过原点, ,。 将 代入,得。解得。 直线AC的函数表达式为。 抛物线的对称轴是直线解得抛物线的函数表达式为。(2)如图,过点B作BDAC于点D。 , 。过点P作PEx轴于点E,PECO,APEACO,解得点P的坐标为(3)()假设Q在运动过程中,存在与坐标轴相切的情况。 设点Q的坐标为。 当Q与y轴相切时,有,即。当时,得,当时,得, 当Q与x轴相切时,有,即

36、当时,得,即,解得,当时,得,即,解得,。综上所述,存在符合条件的Q,其圆心Q的坐标分别为,。()设点Q的坐标为。当Q与两坐标轴同时相切时,有。由,得,即,=此方程无解。由,得,即,解得当Q的半径时,Q与两坐标轴同时相切。19解:(1)由题意,可设所求抛物线对应的函数关系式为 (1分) (3分) 所求函数关系式为: (4分) (2)在RtABO中,OA=3,OB=4,四边形ABCD是菱形BC=CD=DA=AB=5 (5分)C、D两点的坐标分别是(5,4)、(2,0) (6分)当时,当时,点C和点D在所求抛物线上 (7分)(3)设直线CD对应的函数关系式为,则解得: (9分)MNy轴,M点的横坐

37、标为t,N点的横坐标也为t则, ,(10分), 当时,此时点M的坐标为(,) (12分)解;(1) 因为M(1,-4) 是二次函数的顶点坐标,所以 2分令解之得.A,B两点的坐标分别为A(-1,0),B(3,0)4分 (2) 在二次函数的图象上存在点P,使5分设则,又,二次函数的最小值为-4,.当时,.故P点坐标为(-2,5)或(4,5)7分(3)如图1,当直线经过A点时,可得8分 当直线经过B点时,可得9分由图可知符合题意的的取值范围为10分22.解:(1)二次函数的图像经过点A(2,0)C(0,1) 解得: b= c=1-2分二次函数的解析式为 -3分(2)设点D的坐标为(m,0) (0m2) OD=m AD=2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁