反函数典型例题.pdf

上传人:Q****o 文档编号:56610565 上传时间:2022-11-02 格式:PDF 页数:4 大小:173.67KB
返回 下载 相关 举报
反函数典型例题.pdf_第1页
第1页 / 共4页
反函数典型例题.pdf_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《反函数典型例题.pdf》由会员分享,可在线阅读,更多相关《反函数典型例题.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、反函数求值例 1、设有反函数,且函数与互为反函数,求的值分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果解:设,则点在函数的图象上,从而点在函数的图象上,即由反函数定义有,这样即有,从而小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解两函数互为反函数,确定两函数的解析式例 2 若函数与函数互为反函数,求的值.分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何布列?如果注意到g(x)的定义域、值域已知,又与 g(x)互为反函数,其定义域与值域互换,有如下解法:解:g

2、(x)的定义域为且,的值域为.又g(x)的定义域就是的值域,.g(x)的值域为,由条件可知的定义域是,.令,则即点(3,1)在的图象上.又 与 g(x)互为反函数,(3,1)关于的对称点(1,3)必在 g(x)的图象上.3=1+,.故.判断是否存在反函数例 3、给出下列函数:(1);(2);(3);(4);(5).其中不存在反函数的是 _.分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数.解:(1),(2)都没有问题,对于(3)当时,和,且.对于(

3、4)时,和.对于(5)当时,和.故(3),(4),(5)均不存在反函数.小结:从图象上观察,只要看在相应的区间内是否单调即可.求复合函数的反函数文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 H

4、I10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z

5、7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8

6、ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G

7、10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2

8、文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:C

9、Q9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2例 4、已知函数,求的反

10、函数.分析:由于已知是,所求是的反函数,因此应首先由找到,再由求出的表达式,再求反函数.解:令,则,.于是有.由得,由于,.又,的值域是,的反函数是.小结:此题涉及对抽象函数符号的认识与理解,特别是在换元过程中,相应变量的取值范围也要随之发生改变,这一点是学生经常忽略的问题.原来的函数与反函数解析式相同求系数例 5、已知函数与其反函数是同一个一次函数,试指出的所有取值可能.分析:此题可以有两种求解思路:一是求解的反函数的解析式,与比较,让对应系数相等,列出关于的方程,二是利用两个函数图象的对称性,找对称点,利用点的坐标满足解析式来列方程.解:由知点在图象上,则点定在的图象上,于是(1)又过点,

11、则点也在的图象上,于是(2)文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V

12、1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8

13、T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码

14、:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5

15、H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6

16、 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C

17、2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2由(1)得或,当时,代入(2),此时(2)恒成立即;当代入(2)解得.综上,的所有取值可能有或.小结:此题是反函数概念与方程思想的综合.在这

18、个题目中特殊点的选取一般是考虑计算简单方便,而且这种取特殊点列方程的方法在其他地方也有应用,故对此种方法要引起重视.另外此题在最后作答时,要求写出的所有取值可能即要把的取值与的取值 搭配在一起,所以解方程组时要特别小心这一点.选题角度:反函数图象关系、将反函数问题转化为原函数、利用性质求解析式、两函数互为反函数,确定两函数的解析式判断是否存在反函数、求出反函数解析式解关于反函数的不等式、求复合函数的反函数、由原来函数运算关系证明反函数运算。文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G

19、10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2

20、文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:C

21、Q9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6

22、H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 H

23、I10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z

24、7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2文档编码:CQ9L5H6H7F6 HI10C2Z7G1A8 ZJ1V1G10N8T2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁