《2013考研数学模拟卷数三1答案.pdf》由会员分享,可在线阅读,更多相关《2013考研数学模拟卷数三1答案.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2013 考研数学模拟试卷一【数三】解析一、选择题(1)D 解:.15)sin1(cos55sin5limlimsin100exxxxxxx(2)B解:由0()1lim01cosxf xx,0lim(1cos)0 xx,得0lim()1)0 xf x,而由()fx连续知()f x连续,所以0lim()(0)1xf xf.于是2200()(0)()1 1cos(0)limlim01cosxxf xff xx xfxxxx,所以0 x是()f x的驻点.又由20()1lim111xfxx,20lim(11)0 xx,得0lim()1)(0)10 xfxf,即(0)10f,所以()f x在点0 x处
2、有(0)0f,(0)10f,故点0 x是()f x的极小值.应选(B).(3)B解:当01p时,由积分中值定理得11sin()12(1)sin()11(1)nnnpppnnnnxdxx dxx,(,1)nn n,所以1sin()22|1(1)(1)1)npppnnxdxxn,(,1)nn n,而22()(1)1)ppnnn,12pnn发散,所以原级数非绝对收敛.又1sin()2|0()1(1)nppnnxdxnx,而(,1)nn n,即1sin()|1npnxdxx单调减少.由莱布尼茨判别法知原级数收敛,故级数是条件收敛的,应选(B).(4)D解:记20)(dxxfA为常数,于是有8)(xfA
3、,即Axf8)(,两边积分得CxAxf8)(,由0)0(f得0C,从而xAxf8)(于是AxdxAdxxfA168)(2020,即4A,故4)(20Adxxf选(D)(5)A解:易知0Bx的解是0ABx的解。当 A列满秩时,即nAr)(时,齐次线性方程组0Ax只有零解。于是,若0 x为0ABx的任一解,即00ABx,则一定有00Bx,从而0 x也为0Bx的解,故组0Bx与0ABx同解。(6)C解:A=2x;A 特征值:2,1,x;对应*A特征值为:x,2x,2;解得 x=-1 或-2文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O
4、4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I
5、9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7
6、文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A
7、2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P
8、4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9
9、W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U
10、2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7(7)B解:因为aXbY服从正态分布,股根据题设1()2P aXbY知,()()()()E aXbYaE XbE Yab,从而有1ab,显然只有(B)满足要求。(8)B解:BA,0005.15.011102115.15.01110成立。二、填空题:914 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.(9)1解:设2020cos()1xtxf xt dt
11、edt,则201(0)0tfedt,220()102ft dt,由介值定理知,存在0(0,)2x,使0()0f x.又22cos()1sinxfxxex,而211x,2cos|sin|1xex,故()0fx,()f x严格单调增加,()0fx只有唯一的根0 x.(10)解:duudttxyxutxx00sin)sin(,xysin,1)2(y,201sin)2(uduy,故过)1,2(处的切线方程为21xy(11)解:由222yz知)(21xCyyz,由xxfy)0,(得xxC)(1,于是xyyz2,文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:C
12、G4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH
13、1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ
14、7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码
15、:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4
16、HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9
17、ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档
18、编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7从而)(22xCxyyz,又1)(1)0,(2xCxf,故12xyyz(12)1,5)解:由公式,111(1)3lim133nnnnn所以3R,收敛区间(23,23),即(1,5).再考虑端点1,5xx处.在1x处,原级数成为1(1)nnn,收敛;在5x处.原级数成为11nn,发散.所以应填 1,5).(13)解:系数矩阵0200200000010010a
19、a,因此a0(14)2ln21。解:0,00,)(xxexfXx。记),3(,2pBYXA其中222edxeXPpx。依题意21,87)1(1 01 13ppYPYP。由212e,得2ln21。三、解答题(15)解:(1)令0 x,得1)(10dxxg。(2)对变限积分令dudtuxt,,则有文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9
20、ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档
21、编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O
22、4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I
23、9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7
24、文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A
25、2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P
26、4I9 ZZ7W9L5W9W7)()12()()()(0)(xfxduugdtxtgxfxfxx,两边关于x求导,注意到xxfg)(,得)(2)()12()(xfxfxxfx,即0)(2)()1(xfxfx,则2)1()(xCxf。又1)0(f,所以1C,于是2)1(1)(xxf。(16)解:2222222,2uuuuuuuxx,222222222,2uuuuuuuabaabbyy,将以上各式代入原等式,得2222222(341)64()2(341)0uuuaaababbb,由题意,令223410,3410,aabb且64()20abab故1,1,31,1,3aabb或(17)解:本题要求函数
27、Qkx y在条件120PxP yA下的最大值点.用拉格朗日系数法,构造拉格朗日函数12(,)()F x ykx yPxP yA,文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 Z
28、Z7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编
29、码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4
30、 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9
31、 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文
32、档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2
33、O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7为求函数(,)F x y的驻点,令由、消去参数可得12PyxP,即12PxyP,代入不难计算出唯一驻点1()AxP,2()AyP.因驻点
34、唯一,且实际问题必存在最大产量,所以计算结果表明,当投入总价值为A(万元)的甲、乙两种原料时,使产量Q最大的甲、乙两种原料的投入量分别是1()AxP(吨)与2()AyP(吨).(18)证明:在0 x处,将)(xfTaylor 展开,(,!3)(2)0()0()(32xfxffxf在0,x之间),则由)(xf的连续性知,)(xf在,21上有最大最小值,分别设为,mM则)19(解:(1)102sinsin1210sin110sin1)1(cos)1(1|1111)(11dxexexnexnexdnaxxnxnxnndxexexnnexxn102sinsin1)1(cos11)1)(1(1。记)2)
35、(1(1)1(cos11101102sinsin1nnedxxnedxexexnInxxnn,于是0limnna。(2),1,1lim,)1)(1(11Raaneannnn收敛区间为)1,1(。当1x时,,)1()1)(1()1()1(nnnnnInea文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G
36、5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R1
37、0G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9
38、L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG
39、4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1
40、R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7
41、W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W71)1)(
42、1()1(nnne条件收敛,1)1(nnnI绝对收敛,因此1)1(nnna收敛;当1x时,当n充分大时,)2)(1()1)(1(1nnenean,所以1nna发散,因此级数的收敛域为)1,1。(11分)(20)解:(I)由 已 知 得,123123()2()A,2121()()A,3131()()A,又因为123,线性无关,所以1230,210,310所以1,2 是A的特征值,123,21,31是相对应的特征向量。又由123,线性无关,得123,21,31也线性无关,所以1是矩阵A的二重特征值,即A得全部特征值为1,2(II)由123,线性无关,可以证明123,21,31也线性无关,即A有三个
43、线性无关的特征向量,所以,矩阵A可相似对角化。(21)解:将阵),(321321作初等行变换化成阶梯阵。010200202210131121abba。故当2,1 ba时,3),(),(321321RR,且可以相互线性表示,所以321,与321,秩相等且等价;当2,1 ba时,2),(),(321321RR,文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10
44、G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L
45、5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4
46、G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R
47、10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W
48、9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:C
49、G4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH1R10G1P4I9 ZZ7W9L5W9W7文档编码:CG4G5U2A2O4 HH
50、1R10G1P4I9 ZZ7W9L5W9W7等秩且可以相互线性表示;当2,1 ba时,2),(),(321321RR,等秩,显然3不可由321,线性表示,所以不等价;当2,1 ba时,3),(2),(321321RR,不等秩也不等价。(11 分)(22)解:区域D实际上是以(1,0),(1,0),(0,1),(0,1)为顶点的正方形区域,D的面积为,(,)X Y的联合密度为1,(,);(,)20,.x yDf x y其他有了(,)f x y就可以求()Ufu和()Vfv,特别可利用(,)f x y的对称性.()UXY,()(,)Uxy uFuP UuP XYuf x y dxdy.当1u时,(