《2016届宁夏银川市第二中学高三上学期统练(一)数学(理)试题(解析版).pdf》由会员分享,可在线阅读,更多相关《2016届宁夏银川市第二中学高三上学期统练(一)数学(理)试题(解析版).pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、银川二中 2015-2016 学年第一学期高三年级统练一数 学 试 卷(理科)一、选择题(本大题共12 小题,每小题5 分,满分 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1设集合5,2,3,2,1,6,5,4,3,2,1BAU,则)(BCAU=()A1,3B2C 2,3D3答案:A试题分析:因为1,3,4UC B,所以()1,2,31,3,41,3UAC B,选 A考点:集合运算2在等差数列na中,若,32a943aa,则61aa=()A18 B14 C2 D27答案:B试题分析:34255161699612,714.aaaaadaaa a选 B 考点:等差数列通项3函
2、数 f(x)x34x 5的图象在x1 处的切线在x 轴上的截距为()A10 B 5C 1 D37答案:D试 题 分 析:因 为2()34fxx,所 以(1)7kf,切 线 方 程 为:(1)7(1)107(1)yfxyx,令0y得37x,选 D考点:导数几何意义4等比数列na的前 n 项和为nS,已知12310aaS,95a,则1a=()A31 B31 C91 D91答案:D试 题 分 析:232112321311 01 099Saaaaaaaaaq,因 此 由425111199999aa qaa,选 D考点:等比数列通项5将函数)62sin(xy图象向左平移4个单位,所得函数图象的一条对称轴
3、的方程是()A12x B6x C 3x D 12x答案:A试 题 分 析:函 数)62sin(xy图 象 向 左 平 移4个 单 位,所 得 函 数 为sin(2()sin(2)463yxx,所 以 由2,()32xkkZ得 对 称 轴 方 程 为,()122kxkZ,从而一条对称轴的方程是12x,选 A考点:三角函数图像与性质6已知|a|1,|b|2,a与b的夹角为60,则ab在a上的投影为()A1 B2 C772 D77答案:B试题分析:ab在a上的投影为()112cos602|aaba,选 B考点:向量投影7已知,0,22)3cos(,则2tan()A33 B3或33 C 33 D 3答
4、案:C试题分析:40,333,因 此由22)3cos(得3553,2,tan2.341263选 C考点:特殊角三角函数值8在 ABC中,M为边 BC上任意一点,N为 AM的中点,ANABAC,则 的值为()A12 B13 C14 D1答案:A试题分析:因为222AMANABAC,所以1221,2选 A考点:向量共线表示9已知命题p:函数2()21(0)fxaxxa在(0,1)内恰有一个零点;命题 q:函数2 ayx在(0,)上是减函数,若p 且q为真命题,则实数a的取值范围是()A1aBa2 C 12答案:C试题分析:命题p 为真时:0,(1)2201afaa;命题q 为真时:文档编码:CY4
5、Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9
6、文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10
7、T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9
8、 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2
9、X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5
10、K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码
11、:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X
12、10G920,2aa,因为 p 且q为真命题,所以命题 p 为真,命题 q 为假,即12a,选 C考点:命题真假10ABC中,角,A B C成等差数列是sin(3cossin)cosCAAB成立的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案:A试题分析:由题意得:sin()(3cossin)coscossin3 coscoscos0tan3ABAABABABAB或即23AB或,而角,A B C成等差数列,则3B,因此角,A B C成等差数列是sin(3cossin)cosCAAB成立的充分不必要条件,选A考点:充要关系11在正项等比数列an中,存在两项nmaa,
13、,使得nmaa 41a,且5672aaa,则nm51的最小值是()A47 B135 C625D352答案:A试 题 分 析:2765221(),2aaaqqqq舍;由mna a 21a得224m nq,即22222,6mnmn,因此nm511515151()(6)(62)(62 5)6666mnnmnmmnmnmn,但等于 号 取 不 到,从 而 逐 一 验 证12345,54321mmmmmnnnnn得24mn时nm51取最小值为74,选 A考点:等比数列性质12函数)(xfy为定义在R上的减函数,函数)1(xfy的图像关于点(1,0)对称,,x y满足不等式0)2()2(22yyfxxf,
14、(1,2),(,)MN x y,O为坐标原点,则当41x时,OM ON的取值范围为()A,12B3,0 C12,3 D12,0文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9
15、HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q
16、8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文
17、档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T
18、10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9
19、ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X
20、1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K
21、4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9答案:D试题分析:由题意得函数()yf x的图像关于点(0,0)对称,即函数()yf x为奇函数,因此由0)2()2(22yyfxxf得22(2)(2)f xxfyy,2222,()(2)0 xxyyxyxy因为41x所以可行域为一个三角形ABC及其内部,其中(11)(4 4),(42)ABC,而2OMONxy,所以过点C时取最小值0,过点 B时取最大值12,选 D 考点:线性规划求最值二、填空题(本大题共4 小题,每小题5 分,共 20 分.)
22、13已知m,()yf x,x,且2ab与ab垂直,则实数的值为答案:29试题分析:由题意得:229(2)()02.2ababab考点:向量数量积14已知数列na的前 n 项的和nS满足nSn)1(log2,则na=答案:12n试题分析:2log(1)12nnnSnS,所以111222(2)nnnnnnaSSn,又11=211aS,因此na=12n考点:数列通项15已知函数()2sin(),(0)6f xx的图象与y 轴交于 P,与 x 轴的相邻两个交点记为 A,B,若 PAB的面积等于 ,则 _答案:12试题分析:由题意得:(01)2TPAB,因此111=.22,考点:三角函数性质16 ABC
23、为锐角三角形,内角CBA,的对边长分别为cba,,已知2c,且AABC2sin2)sin(sin,则a的取值范围是_答案:2 5 2 3(,)53试题分析:sinsin()2sin 2sin()sin()2sin 22sincos4sincosCBAAABBAABAAA文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10
24、I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D
25、7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9
26、HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q
27、8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文
28、档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T
29、10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9
30、ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9,因为ABC为锐角三角形,所以sin2sin2BAba,因为ABC为锐角三角形,所以2222220,0,abcacb即2254,34,aa解得a的取值范围是25 23(,)53考点:正弦定理,余弦定理应用三、解答题(本大题 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸
31、的相应位置上)17(本题满分12 分)已知等差数列na中,,21a1053aa(1)求数列na的通项公式;(2)令1nnnaab,证明:2111121nbbb答案:(1)1nan(2)详见解析试题分析:(1)求等差数列通项公式,一般利用待定系数法,求出首项及公差,代入通项公式1(1)naand即可。本题已知首项,只需由1053aa解出公差即可;(2)证明数列和式不等式,一般方法为以算代证,先分析数列通项1nb的特征,可知利用裂项相消法求和,即由1111111()nnnnnbaadaa得其和为11111()nd aa1122n,因此只需再利用放缩即可得证试题解析:(1)联立解得:,21a,1d1
32、nan;(2)证明:由(1)知,)2)(1(nnbn;212121)2)(1(143132111121nnnbbbn考点:等差数列通项,裂项求和18(本小题满分12 分)f(x)=ab,其中向量a=(m,cos2x),b=(1+sin2x,1),xR,且函数()yf x的图象经过点(,2)4()求实数m的值()求函数()yf x的最小值及此时x值的集合。答案:()1m()最小值为12,3|,8x xkkZ文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4
33、Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9
34、文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10
35、T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9
36、 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2
37、X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5
38、K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码
39、:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9试题分析:()由向量数量积坐标公式得函数()yfx(1sin 2)cos2mxx,再根据()4f2 得1m()先利用配角公式将()yf x化为基本三角函数:()1sin
40、 2cos212 sin(2)4f xxxx,再根据正弦函数性质求最小值及对应x值:当si n(2)14x时,()yf x的 最 小 值 为12,x值 的 集 合 为3|,8x xkkZ试题解析:()()fxa b(1sin 2)cos2mxx由已知()4f(1sin)cos222m,得1m()由()得()1sin 2cos212 sin(2)4f xxxx当sin(2)14x时,()yfx的最小值为12,由sin(2)14x,得x值的集合为3|,8x xkkZ考点:向量数量积,配角公式,三角函数性质19(本题满分12 分)如图,在ABC中,BC边上的中线AD长为 3,且10cos8B,1co
41、s4ADC(1)求sinBAD的值;(2)求AC边的长答案:(1)64(2)4试题分析:(1)利用角的关系BADADCABD,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即 CD长:由正弦定理,得文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4
42、Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9
43、文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10
44、T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9
45、 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2
46、X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5
47、K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码
48、:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9sinsinADBDBBAD,即33 6684BD,解 得2BD 故2DC;再 在 三 角 形ADC 中 由 余 弦 定 理 解 出AC:2222cosACADDCAD DCADC221322 32()164;AC=4试题解析:(1);863sin,810cosBB451sin,41cosADCADC;46)sin(sinBADCBAD(2)
49、在ABD中,由正弦定理,得sinsinADBDBBAD,即33 6684BD,解得2BD故2DC,从而在ADC中,由余弦定理,得2222cosACADDCAD DCADC221322 32()164;AC=4 ;考点:正余弦定理20(本小题满分12 分)已知等比数列na是递增数列,,3252aa1243aa,数列nb满足11b,且nnnabb221(Nn)(1)证明:数列nnab是等差数列;(2)若对任意Nn,不等式nnbbn1)2(总成立,求实数的最大值答案:(1)详见解析(2)12试题分析:(1)求等比数列通项公式,一般利用待定系数法,求出首项及公比,代入通项公式11nnaa q即可。本题
50、先利用等比数列性质转化条件25343232a aa a;再结合1243aa联立方程组解出34,a a,根据等比数列na递增性,舍去一解,最后根据43aqa求出公比及首项。证明数列为等差数列,一般利用定义进行证明,即证11nnnnbbaa为一个常数(2)不等式恒成立,先利用变量分离,转化为研究函数最值,即文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9 HJ2X1R9D7I9 ZS10I10T10X10G9文档编码:CY4Q8M5K4M9