2012年上海杨浦高三二模数学(理科含答案).pdf

上传人:H****o 文档编号:55708031 上传时间:2022-10-31 格式:PDF 页数:8 大小:195.83KB
返回 下载 相关 举报
2012年上海杨浦高三二模数学(理科含答案).pdf_第1页
第1页 / 共8页
2012年上海杨浦高三二模数学(理科含答案).pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2012年上海杨浦高三二模数学(理科含答案).pdf》由会员分享,可在线阅读,更多相关《2012年上海杨浦高三二模数学(理科含答案).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2012 杨浦区高考数学质量抽查试卷数学(理科)20XX 年 3 月一、填空题(每小题 4分,满分 56 分)1若线性方程组的增广矩阵为135246,则其对应的线性方程组是25(1)x+的展开式中2x的系数是(结果用数字作答).3若双曲线2221(0)9xyaa的一条渐近线方程为023yx,则a=_4计算:2111lim(1)333nnL .5若直线l过点(2,0),且与圆221xy相切,则直线l的斜率是 .6函数2)cos(sin)(xxxf的最小正周期为 .7一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为_

2、.8若行列式093114212xx,则x9如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得75BCD,60BDC,30CD米,并在点C测得塔顶A的仰角为60,则塔高AB_米.10.在不考虑空气阻力的条件下,火箭的最大速度v(米/秒)和燃料的质量M(千克)、火箭(除燃料外)的质量m(千克)的关系式是)1ln(2000mMv.当燃料质量与火箭(除燃料外)的质量之比为时,火箭的最大速度可达12(千米/秒)11.圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm12.设 幂 函 数

3、3)(xxf,若 数 列na满 足:20121a,且)(1nnafa,)(Nn则 数 列 的 通 项na13.对任意一个非零复数z,定义集合NnzAnz,,设是方程012x的一个根,若在A中任取两个不同的数,则其和为零的概率为P=(结果用分数表示)14函数11yx的图像与函数2sinyx)42(x的图像所有交点的横坐标之和等于_.二、选择题(每小题5 分,满分20 分)(11 题图)(9 题图)1AABECD1B1C1D15下列函数中既是奇函数,又在区间1,1上是增函数的为()AyxBsinyxCxxyeeD3yx16执行如图所示的程序框图,输出的S值为()A1.B1.C2.D0.17“3ta

4、n3x”是“56x”()A充分非必要条件.B必要非充分条件.C充要条件.D既非充分也非必要条件.18已知点(1,1)A若曲线G上存在两点,B C,使ABC为正三角形,则称G为型曲线给定下列三条曲线:3(03)yxx;22(20)yxx;1(0)yxx其中,型曲线的个数是()A.0B.1C.2D.3三解答题(本大题满分74 分)本大题共5 题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19(本题满分12 分)本题共有2 个小题,第1 小题满分 4 分,第 2 小题满分8 分 已知关于x的不等式022mxx解集为2,1.(1)求实数m的值;(2)若复数sincos,221izim

5、z,且21zz为纯虚数,求2tan的值.20(本题满分14 分)本题共有2 个小题,第1 小题满分 7 分,第 2 小题满分7 分 如图所示,直四棱柱1111ABCDA B C D的侧棱1AA长为a,底面ABCD是边长2ABa,BCa的矩形,E为11C D的中点,(1)求证:DE平面EBC;(2)求点C到平面EBD的距离.21(本题满分14 分)本题共有2 个小题,第1 小题满分 6 分,第 2 小题满分8 分设Ra,122)(2xxaaxf为奇函数.(16 题图)文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6

6、P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3

7、G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J

8、9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7

9、N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10

10、Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP

11、2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9

12、M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8文档编码:CP2J9D1J2X4 HB9M7N6P8X4 ZY5X10Y3G9X8(1)求函数11242)()(xxxfxF的零点;(2)设)1(log2)(2kxxg,若不等式1()()fxg x在区间1 2,2 3上恒成立,求实数k的取值范围.22(本题满分16 分)本题共有3 个小题,第1 小题满分 4 分,第 2 小题满分6 分,第 3 小题满分6 分.已知数列12:,nnAa aaL.如果数列12:,nnBb bbL满足1nba,11kkkkbaab,其中2,3

13、,knL,则称nB为nA的“生成数列”.(1)若数列41234:,Aa aaa的“生成数列”是4:5,2,7,2B,求4A;(2)若n为偶数,且nA的“生成数列”是nB,证明:nB的“生成数列”是nA;(3)若n为奇数,且nA的“生成数列”是nB,nB的“生成数列”是nC,.依次将数列nA,nB,nC,的第(1,2,)i inL项取出,构成数列:,iiiia b c L.探究:数列i是否为等差数列,并说明理由.23(本题满分18 分)本题共有2 个小题,第1 小题满分 4 分,第 2 小题的满分6 分;满分 8 分.如图,椭圆14:221yxC,x轴被曲线22:Cyxb截得的线段长等于1C的长

14、半轴长.(1)求实数b的值;(2)设2C与y轴的交点为M,过坐标原点O的直线l与2C相交于点BA、,直线MBMA、分别与1C相交与、DE.证明:0MEMD记BMA,MDE的面积分别是12,S S.若21SS=,求的取值范围.、(23 题图)文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6

15、R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 H

16、A6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6

17、W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10

18、ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B

19、6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8

20、文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:C

21、J5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H820XX 年杨浦区高三年级二模数学试卷(理科)参考答案和评分标准说明:1、本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分2、评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分一填空题(本大题满分56 分)1.64253yxyx;2.5;3.2;4.23;5.33

22、;6.;7.12;8.2或3;9.245;10.16e;11.4;12.132012n;13.31;14.8;二、选择题(本大题满分20 分)本大题共有4 题 15.B;16.D;17.B;18.C;三、解答题(本大题满分74 分)本大题共5 题19.解:(1)4 2m20,解得 m=1 (2)21zz=(cos 2sin)(sin 2cos)i为纯虚数所以,cos 2sin 0,tan=12,所以,2tan=4320.(1)证明:由2ECEDa,2CDaECED,2 分BC平面11CC D DBCDE,4 分即 DE垂直于平面EBC中两条相交直线,因此 DE平面 EBC,7 分(2)解 1:

23、结合第(1)问得,由aDEaDB2,5,8 分aBE3,BEDE,所以,2263221aaaSBED 10 分又由BCDEBEDCVV得32312631aah 12 分文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:C

24、J5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6

25、R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 H

26、A6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6

27、W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10

28、ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B

29、6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8

30、1AABEC()D O1B1C1Dxyz故 C到平面 BDE的距离为ah36 14 分解 2:如图建立直角坐标系,则(0,)Ea a,(0,)OEa auuu r,(,2,0)B aa,(,2,0)OBaauuu r,9 分因此平面EBD的一个法向量可取为(2,1,1)nr,由(0,2,0)C,得(1,0,0)BCuuu r,11 分因此 C到平面 BDE的距离为|63|n BCdanr uuu rr.(其他解法,可根据【解1】的评分标准给分)21.解:由 f(x)是奇函数,可得 a=1,所以,f(x)2121xx(1)F(x)2121xx42121xx2(2)2621xxx由2(2)26xx

31、0,可得2x 2,所以,x=1,即 F(x)的零点为x1。(2)f1(x)21log1xx,在区间1 2,2 3上,由1()()fxg x恒成立,即21log1xx212log()xk恒成立,即2111xxxk恒成立即221 21,2 3kxx,259k,所以,5533k22.(1)解:由题意得:541ab;52122aab;57133aab;52144aab4:2,1,4,5A.(2)证法一:证明:由已知,111()nbaaa,212121()nbaabaaa.因此,猜想1(1)()iiinbaaa.当1i时,111()nbaaa,猜想成立;假设*()ik kN时,1(1)()kkknbaa

32、a.当1ik时,11kkkkbaab11(1)()kkkknaaaaa文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R

33、8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA

34、6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W

35、2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 Z

36、A8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6

37、M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文

38、档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H811(1)()kkkknaaaaa111(1)()kknaaa故当1ik时猜想也成立.由、可知,对

39、于任意正整数i,有1(1)()iiinbaaa.设数列nB的“生成数列”为nC,则由以上结论可知111(1)()(1)()(1)()iiiiininncbbbaaabb,其中1,2,3,inL.由于n为偶数,所以11(1)()nnnnbaaaa,所以11(1)()(1)()iiiinnicaaaaaa,其中1,2,3,inL.因此,数列nC即是数列nA.证法二:因为1nba,1212bbaa,2323bbaa,11nnnnbbaa,由于n为偶数,将上述n个等式中的第2,4,6,nL这2n个式子都乘以1,相加得11223112231()()()()()()nnnnnbbbbbbbaaaaaaaL

40、L即1nba,1nba.由于1nab,11(2,3,)iiiiabbainL,根据“生成数列”的定义知,数列nA是nB的“生成数列”.(3)证法一:证明:设数列nX,nY,nZ中后者是前者的“生成数列”.欲证i成等差数列,只需证明,iiix y z成等差数列,即只要证明2(1,2,3,)iiiyxzinL即可.由(2)中结论可知1(1)()iiinyxxx,1(1)()iiinzyyy11(1)()(1)()iiinnxxxyy11(1)()(1)(1)()iininnnnxxxxxxx11(1)()(1)()iiinnxxxxx文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA

41、8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M

42、10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档

43、编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5

44、N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8

45、P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6

46、K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2

47、B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H812(1)()iinxxx,所以,122(1)()2iiiinixzxxxy,即,iiix y z成等差数列,所以i是等差数列.证法二:因为11(2,3,4,)iiiibaabinL,所以11()(2,3,4,)iiiibabain

48、L.所以欲证i成等差数列,只需证明1成等差数列即可.对于数列nA及其“生成数列”nB,因为1nba,1212bbaa,2323bbaa,11nnnnbbaa,由于n为奇数,将上述n个等式中的第2,4,6,1nL这12n个式子都乘以1,相加得11223112231()()()()()()nnnnnbbbbbbbaaaaaaaLL即112nnnnbaaaaa.设数列nB的“生成数列”为nC,因为1nba,112nncbaa,所以1112bac,即111,a b c成等差数列.同理可证,111111,;,b c d c d e L也成等差数列.即1是等差数列.所以i成等差数列.23(1)由题意知:半

49、长轴为2,则有22 b1b(2)由题意知,直线l的斜率存在,设为k,则直线l的方程为ykx.由21ykxyx得210 xkx,设1122(,),(,)A xyB xy,则12,x x是上述方程的两个实根,于是1212,1xxk x x。又点M的坐标为(0,1),所以文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H

50、8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:CJ5N3O6R8P4 HA6K6Y6W2B10 ZA8K4B6M10H8文档编码:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁