概率论与数理统计模拟考题测验.ppt

上传人:wuy****n92 文档编号:54716132 上传时间:2022-10-29 格式:PPT 页数:49 大小:308KB
返回 下载 相关 举报
概率论与数理统计模拟考题测验.ppt_第1页
第1页 / 共49页
概率论与数理统计模拟考题测验.ppt_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《概率论与数理统计模拟考题测验.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计模拟考题测验.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、期末自测题期末自测题2.设随机变量设随机变量X的概率密度为的概率密度为 则则E()=_.1.设设P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/6,则事件则事件 A,B,C均发生的概率为均发生的概率为_,事件事件A,B,C均不发生的概率为均不发生的概率为_.3.已知随机事件已知随机事件XN(1,4),YN(2,1),且且X与与Y相互独立,相互独立,则则 Z=2X-3Y+1_.一、一、填空题填空题(30分,每空分,每空3分分)4.设设(X,Y)的概率密度为的概率密度为 则则A=_,关于关于X的边缘概率密度的边缘概率密度5.设随机变量设随机变量XN(5,4),则,

2、则PX13/2+PX1未知,未知,则对于来自总体的样本值则对于来自总体的样本值(2.3,1.6,2.7,2.2,1.3,1.1),b的矩估计值为的矩估计值为_.10.设随机变量设随机变量X与与Y独立同分布,记独立同分布,记 U=(X+2Y),V=(X-2Y),则,则U与与V之间必有之间必有 (A)相互独立;相互独立;(B)不相关;不相关;(C)相关相关系数为系数为3/5;(D)相关系数为相关系数为-3/5.9.袋中有大小相同的袋中有大小相同的6个白球,个白球,4个红球,一次随机的摸个红球,一次随机的摸出出4个球,其中恰有个球,其中恰有3个红球的概率为个红球的概率为二二 选择题选择题(20分,每

3、题分,每题4分分)12.设随机变量设随机变量X,Y相互独立,且相互独立,且XB(2,p),YB(3,p),,则则D(2X-Y)=(A)-5/2;(B)-1/2;(C)7/2;(D)211.设随机变量设随机变量X的分布函数为的分布函数为F(x),则,则Y=3X+1的分布函数为的分布函数为G(X)=(B)F(1/3)y-1/3);(C)F(3y+1);(D)3F(y)+113.正态总体正态总体X当方差已知时,当方差已知时,均值均值 的的 的置信区间为的置信区间为14.(20分分)设随机变量设随机变量X与与Y相互独立,且相互独立,且X服从区间服从区间0,2上的均匀分布,上的均匀分布,Y服从参数为服从

4、参数为1/2的指数分布,的指数分布,试求试求(1)(X,Y)的联合概率密度;的联合概率密度;(3)D(X+Y);三、三、解答题解答题15.(10分分)已知某班学生中已知某班学生中2/3是男生,是男生,1/3是女生,其中是女生,其中男生中有男生中有 20%是近似眼,女生中有是近似眼,女生中有25%是近似眼。现是近似眼。现从此班中随机的挑选一名学生,恰好是近似眼。求此从此班中随机的挑选一名学生,恰好是近似眼。求此学生是女生的概率。学生是女生的概率。16.(10分分)设总体设总体X的分布律为的分布律为 X 1 2 3其中其中 为未知参数为未知参数,已知来自总体的样本值为已知来自总体的样本值为 试求试

5、求 的极大似然估计值。的极大似然估计值。17.(10分分)甲乙两工厂生产同一种袋装食品,根据经验知甲乙两工厂生产同一种袋装食品,根据经验知他们的产品的袋重量服从正态分布。现对这两家工厂的他们的产品的袋重量服从正态分布。现对这两家工厂的产品进行抽产品进行抽 样调查,分抽检样调查,分抽检8袋和袋和9袋,测得袋重量数据袋,测得袋重量数据分别为分别为问在显著水平问在显著水平 下,下,是否可判定乙厂的袋重小于甲厂的?是否可判定乙厂的袋重小于甲厂的?一、一、填空题填空题(30分,每空分,每空3分分)1.设设P(A,P(B,P(A-B则则 =_。2.将将4个小球随机的放入个小球随机的放入5个大杯子中,则个大

6、杯子中,则4个球恰好在个球恰好在同一个杯子中的概率为同一个杯子中的概率为_。3.从学校乘汽车到第五医院的途中有从学校乘汽车到第五医院的途中有3个交通岗,假设在个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的各个交通岗遇到红灯的事件是相互独立的,概率都是概率都是2/5,用用X表示途中遇到红灯的次数,则表示途中遇到红灯的次数,则X_,平均遇到红灯的次数为平均遇到红灯的次数为_。济南大学试卷济南大学试卷A4.设设(X,Y)的概率密度为的概率密度为则则A=_,关于关于X的边缘概率密度的边缘概率密度 _。5.若若 ,且相互独立,且相互独立,i=1,2,n,6.随机变量随机变量X与与Y的相关系数越接近

7、于的相关系数越接近于0,则,则 X,Y的的线性相关程度越线性相关程度越_。8.设设 为总体为总体 的一个样本,则总体的一个样本,则总体 的方差的的方差的矩估计量矩估计量为为_。7.总体的未知参数总体的未知参数 的点估计的点估计 比比 有效指的是有效指的是_。二、二、(12分分)甲、乙、丙三人独立的向飞机各射击一次,甲、乙、丙三人独立的向飞机各射击一次,命中率分别为命中率分别为,(1)求飞机被击中的概率;求飞机被击中的概率;(2)已知飞机被击中一次,求甲击中飞机的概率。已知飞机被击中一次,求甲击中飞机的概率。三、三、(15分分)设随机变量设随机变量XN(5,4),(1)已知已知 求求P3X7,(

8、2)设设Y=2X+3,求,求PY10+PY16及及E(Y)、D(Y)。四、四、(15分分)已知随机变量已知随机变量X与与Y相互独立,相互独立,(X,Y)的的分布律及边缘分布律的部分数值如表所示:分布律及边缘分布律的部分数值如表所示:Y -1 0 1 X -1 -1 1/8 1 1/8 1/6 1(1)将其余数值添入表中空白处;将其余数值添入表中空白处;(2)求求 ;(3)求求Z=X+Y的分布律。的分布律。五、五、(14分分)用极大似然估计法估计几何分布用极大似然估计法估计几何分布 中的未知参数中的未知参数p。六、六、(14分分)有一批糖果,其袋重量服从正态分布。有一批糖果,其袋重量服从正态分布

9、。现从中随机取现从中随机取16袋,测得样本均值为,袋,测得样本均值为,样本方差为,样本方差为,求总体的期望的置信度为的置信区间。求总体的期望的置信度为的置信区间。济南大学济南大学2007-2008学年第一学期课程考试试卷(学年第一学期课程考试试卷(A卷)卷)课课 程程 概率论与数理统计概率论与数理统计 授课教师授课教师 张张 颖颖 考试时间考试时间 2008年年1月月11 日日 考试班级考试班级 学学 号号 2007007 姓姓 名名 一、单项选择题(共一、单项选择题(共5小题,每小题小题,每小题3分,满分分,满分15分)分)1.设随机变量设随机变量,则,则D(2X)=(A)20;(B)10;

10、(C)5;(D)1/5.2.设设(A)1/4;(B)1/8;(C)1/2;(D)1.3.设连续型随机变量设连续型随机变量X的概率密度函数和分布函的概率密度函数和分布函 数分别为数分别为f(x)和和F(x),则下列选项中正确的则下列选项中正确的是是4.设正态总体期望设正态总体期望 的置信区间长度的置信区间长度则其置信度为则其置信度为 5.设总体设总体是它的一个样本,是它的一个样本,则,则p的无偏的无偏估计量为估计量为 二、填空题(共、填空题(共5小题,每空小题,每空3分,满分分,满分30分)分)1.袋中有袋中有4只白球,只白球,6只黑球,从中任取出只黑球,从中任取出2只,只,2.则恰为一白一黑球

11、的概率是则恰为一白一黑球的概率是 .2.设随机变量设随机变量且且E(X)=3,D(X)=1.2,则则PX=0=.XB(n,p),3.设随机变量设随机变量X的概率密度的概率密度则则P0X0.5=Y=2X+1的概率密度为的概率密度为 .4.已知二维随机变量已知二维随机变量X,Y的联合分布律为的联合分布律为X 0 1 2 0 0.1 0.3 0.15 则则X的边缘分布律为的边缘分布律为 ,PX=Y=.5.已知某厂生产的维尼纶纤度已知某厂生产的维尼纶纤度X服从正态分布服从正态分布.某日某日取取5根纤维,根纤维,测得其纤度均值测得其纤度均值方差为,在检验水平方差为,在检验水平 下下 欲检验这天生产的维尼

12、纶纤度的均方差是否为欲检验这天生产的维尼纶纤度的均方差是否为,应提出原假设和备择假设分别为应提出原假设和备择假设分别为 .检验统计量为检验统计量为 ,它服从的分布为它服从的分布为 ,你检验的结果为你检验的结果为 .其中其中 三、(满分、(满分15分)分)已知随机变量已知随机变量相互独立,相互独立,且且X在区间在区间(0,2)上服从均匀分布,上服从均匀分布,Y在区间在区间(1,3)上服从均匀分布,求:上服从均匀分布,求:(1)X,Y的联合概率密度的联合概率密度f(x,y);一道单项选择题同时列出一道单项选择题同时列出5个答案,一个考生可个答案,一个考生可能知道正确答案,也可能乱猜一个能知道正确答

13、案,也可能乱猜一个.假设他知道假设他知道正确答案的概率为正确答案的概率为乱猜答案猜对的概率为乱猜答案猜对的概率为则他确实知道正确答案的概率为则他确实知道正确答案的概率为多少多少.,已知他答对了,已知他答对了,利用贝叶斯公式利用贝叶斯公式令令C表示考生知道正确答案,表示考生知道正确答案,K表示考生答对了表示考生答对了四、四、8分分五、(满分五、(满分8分)分)某校考生的高等数学成绩(按百分制计)某校考生的高等数学成绩(按百分制计)近似服从正态分布,平均近似服从正态分布,平均 72分,分,且且60分以下的考生占分以下的考生占15.87%,求考生的高等数学成绩在求考生的高等数学成绩在84分至分至96

14、分之分之间的概率间的概率.六、(满分六、(满分8分)分)总体总体X的概率密度函数为的概率密度函数为(X1,X2,Xn)为总体为总体X的样本,的样本,求未知参数求未知参数 的极大似然估计量的极大似然估计量.设总体设总体X的分布律为的分布律为 X 1 2 3其中其中 为未知参数为未知参数,已知来自总体的样本值为已知来自总体的样本值为 试求试求 的矩估计值。的矩估计值。七、(满分七、(满分8分分)八、(满分八、(满分8分)分)已知已知XN(1,32),YN(0,42),它们的相关系数它们的相关系数 设设 求求X与与Z的相关系数,并说明的相关系数,并说明X与与Z是否相互独立是否相互独立.济南大学济南大学2009-2010学年第一学期课程考试试卷(学年第一学期课程考试试卷(A卷)卷)课课 程程 概率论与数理统计概率论与数理统计 授课教师授课教师 张张 颖颖 考试时间考试时间 2010年年1月月4 日日 考试班级考试班级 学学 号号 2009007 姓姓 名名 0123100300

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁