《2013年中考数学压轴题及解析分类汇编.doc》由会员分享,可在线阅读,更多相关《2013年中考数学压轴题及解析分类汇编.doc(98页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2013年中考数学压轴题及解析分类汇编2013年中考数学压轴题及解析分类汇编2013中考数学压轴:相似三角形问题2013中考数学压轴题函数相似三角形问题(一)2013中考数学压轴题函数相似三角形问题(二)2013中考数学压轴题函数相似三角形问题(三)2013中考数学压轴:等腰三角形问题2013中考数学压轴题函数等腰三角形问题(一)2013中考数学压轴题函数等腰三角形问题(二)2013中考数学压轴题函数等腰三角形问题(三)2013中考数学压轴:直角三角形问题2013中考数学压轴题函数直角三角形问题(一)2013中考数学压轴题函数直角三角形问题(二)2013中考数学压轴题函数直角三角形问题(三)2
2、013中考数学压轴:平行四边形问题2013中考数学压轴题函数平行四边形问题(一)2013中考数学压轴题函数平行四边形问题(二)2013中考数学压轴题函数平行四边形问题(三)2013中考数学压轴:梯形问题2013中考数学压轴题函数梯形问题(一)2013中考数学压轴题函数梯形问题(二)2013中考数学压轴题函数梯形问题(三)2013中考数学压轴:面积问题2013中考数学压轴题函数面积问题(一)2013中考数学压轴题函数面积问题(二)2013中考数学压轴题函数面积问题(三)2013中考数学压轴题:函数相似三角形问题(一)例1直线分别交x轴、y轴于A、B两点,AOB绕点O按逆时针方向旋转90后得到CO
3、D,抛物线yax2bxc经过A、C、D三点(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由图1动感体验请打开几何画板文件名“11闸北25”, 拖动点Q在直线BG上运动, 可以体验到,ABQ的两条直角边的比为13共有四种情况,点B上、下各有两种思路点拨1图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角2用待定系数法求抛物线的解析式,用配方法求顶点坐标3第(3)题判断ABQ90是解题的前提4ABQ与
4、COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个满分解答(1)A(3,0),B(0,1),C(0,3),D(1,0)(2)因为抛物线yax2bxc经过A(3,0)、C(0,3)、D(1,0) 三点,所以 解得 所以抛物线的解析式为yx22x3(x1)24,顶点G的坐标为(1,4)(3)如图2,直线BG的解析式为y3x1,直线CD的解析式为y3x3,因此CD/BG因为图形在旋转过程中,对应线段的夹角等于旋转角,所以ABCD因此ABBG,即ABQ90因为点Q在直线BG上,设点Q的坐标为(x,3x1),那么RtCOD的两条直角边的比为13,如果Rt
5、ABQ与RtCOD相似,存在两种情况:当时,解得所以,当时,解得所以, 图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明ABBG;二是我们换个思路解答第(3)题:如图3,作GHy轴,QNy轴,垂足分别为H、N通过证明AOBBHG,根据全等三角形的对应角相等,可以证明ABG90在RtBGH中,当时,在RtBQN中,当Q在B上方时,;当Q在B下方时,当时,同理得到,例2 RtABC在直角坐标系内的位置如图1所示,反比例函数在第一象限内的图像与BC边交于点D(4,m),与AB边交于点E(2,n),BDE的面积为2(1)求m与n的数量关系;(2)当tanA时,求反比例
6、函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果AEO与EFP 相似,求点P的坐标图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A在x轴上运动,可以体验到,直线AB保持斜率不变,n始终等于m的2倍,双击按钮“面积BDE2”,可以看到,点E正好在BD的垂直平分线上,FD/x轴拖动点P在射线FD上运动,可以体验到,AEO与EFP 相似存在两种情况思路点拨1探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口2第(2)题留给第(3)题的隐含条件是FD/x轴3如果AEO与EFP 相似,因为夹角相等,根据对应边成比例,分两种情
7、况满分解答(1)如图1,因为点D(4,m)、E(2,n)在反比例函数的图像上,所以 整理,得n2m(2)如图2,过点E作EHBC,垂足为H在RtBEH中,tanBEHtanA,EH2,所以BH1因此D(4,m),E(2,2m),B(4,2m1)已知BDE的面积为2,所以解得m1因此D(4,1),E(2,2),B(4,3)因为点D(4,1)在反比例函数的图像上,所以k4因此反比例函数的解析式为设直线AB的解析式为ykxb,代入B(4,3)、E(2,2),得 解得,因此直线AB的函数解析式为图2 图3 图4(3)如图3,因为直线与y轴交于点F(0,1),点D的坐标为(4,1),所以FD/ x轴,E
8、FPEAO因此AEO与EFP 相似存在两种情况:如图3,当时,解得FP1此时点P的坐标为(1,1)如图4,当时,解得FP5此时点P的坐标为(5,1)考点伸展本题的题设部分有条件“RtABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变第(2)题反比例函数的解析式为,直线AB为第(3)题FD不再与x轴平行,AEO与EFP 也不可能相似图52013中考数学压轴题函数相似三角形问题(二)例3 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M
9、的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x
10、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2x1随S的增大而减小双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果GAFGQE,那么GAF与GQE相似思路点拨1第(2)题用含S的代数式表示x2x1,我们反其道而行之,用x1,x2表示S再注意平移过程中梯形的高保持不变,即y2y13通过代数变形就可以了2第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理
11、计算,后验证3第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴的下方,或者假设交点G在x轴的上方满分解答(1)抛物线的对称轴为直线,解析式为,顶点为M(1,)(2) 梯形O1A1B1C1的面积,由此得到由于,所以整理,得因此得到当S=36时, 解得 此时点A1的坐标为(6,3)(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的GAF与GQE,有一个公共角G在GEQ中,GEQ是直线AB与抛物线对称轴的夹角,为定值在GAF中,GAF是直线A
12、B与x轴的夹角,也为定值,而且GEQGAF因此只存在GQEGAF的可能,GQEGAF这时GAFGQEPQD由于,所以解得 图3 图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3例4 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB 的交点为C,试在x轴上找一个点D,使得以点B、C、D为顶点的三
13、角形与ABC相似图1 动感体验请打开几何画板文件名“10宝山24”,拖动点A向右平移,可以体验到,平移5个单位后,四边形A ABB为菱形再拖动点D在x轴上运动,可以体验到,BCD与ABC相似有两种情况思路点拨1点A与点B的坐标在3个题目中处处用到,各具特色第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B 的坐标、AC和BC的长2抛物线左右平移,变化的是对称轴,开口和形状都不变3探求ABC与BCD相似,根据菱形的性质,BACCBD,因此按照夹角的两边对应成比例,分两种情况讨论满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线上,所以 解得,(2)如
14、图2,由点A (-2,4) 和点B (1,0),可得AB5因为四边形A ABB为菱形,所以A ABB AB5因为,所以原抛物线的对称轴x1向右平移5个单位后,对应的直线为x4因此平移后的抛物线的解析式为图2(3) 由点A (-2,4) 和点B (6,0),可得A B如图2,由AM/CN,可得,即解得所以根据菱形的性质,在ABC与BCD中,BACCBD如图3,当时,解得此时OD3,点D的坐标为(3,0)如图4,当时,解得此时OD,点D的坐标为(,0) 图3 图4考点伸展在本题情境下,我们还可以探求BCD与AB B相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况我们也可以讨论BCD
15、与CB B相似,这两个三角形有一组公共角B,根据对应边成比例,分两种情况计算2013中考数学压轴题函数相似三角形问题(三)例5 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,2)三点(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PMx轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得DCA的面积最大,求出点D的坐标,图1动感体验 请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,PAM的形状在变化,分别双击按钮“P在B左
16、侧”、“ P在x轴上方”和“P在A右侧”,可以显示PAM与OAC相似的三个情景双击按钮“第(3)题”, 拖动点D在x轴上方的抛物线上运动,观察DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,DCA的面积最大思路点拨1已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便2数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长3按照两条直角边对应成比例,分两种情况列方程4把DCA可以分割为共底的两个三角形,高的和等于OA满分解答 (1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为,代入点C的 坐标(0,2),解得所以抛物线的解析式为(
17、2)设点P的坐标为如图2,当点P在x轴上方时,1x4,如果,那么解得不合题意如果,那么解得此时点P的坐标为(2,1)如图3,当点P在点A的右侧时,x4,解方程,得此时点P的坐标为解方程,得不合题意如图4,当点P在点B的左侧时,x1,解方程,得此时点P的坐标为解方程,得此时点P与点O重合,不合题意综上所述,符合条件的 点P的坐标为(2,1)或或 图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E直线AC的解析式为设点D的横坐标为m,那么点D的坐标为,点E的坐标为所以因此当时,DCA的面积最大,此时点D的坐标为(2,1) 图5 图6考点伸展第(3)题也可以这样解:如图6,过D点构造矩形OA
18、MN,那么DCA的面积等于直角梯形CAMN的面积减去CDN和ADM的面积设点D的横坐标为(m,n),那么由于,所以例6 如图1,ABC中,AB5,AC3,cosAD为射线BA上的点(点D不与点B重合),作DE/BC交射线CA于点E.(1) 若CEx,BDy,求y与x的函数关系式,并写出函数的定义域;(2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;(3) 当点D在AB边上时,BC边上是否存在点F,使ABC与DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由 图1 备用图 备用图动感体验 请打开几何画板文件名“09闸北25”,拖动点D可以在射线BA上运动双击按钮“第(2)
19、题”,拖动点D可以体验到两圆可以外切一次,内切两次双击按钮“第(3)题”,再分别双击按钮“DE为腰”和“DE为底边”,可以体验到,DEF为等腰三角形思路点拨1先解读背景图,ABC是等腰三角形,那么第(3)题中符合条件的DEF也是等腰三角形2用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况3求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意4第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题满分解答 (1)如图2,作BHAC,垂足为点H在RtABH中,AB5,cosA,所
20、以AHAC所以BH垂直平分AC,ABC 为等腰三角形,ABCB5 因为DE/BC,所以,即于是得到,()(2)如图3,图4,因为DE/BC,所以,即,因此,圆心距 图2 图3 图4在M中,在N中,当两圆外切时,解得或者如图5,符合题意的解为,此时当两圆内切时,当x6时,解得,如图6,此时E在CA的延长线上,;当x6时,解得,如图7,此时E在CA的延长线上, 图5 图6 图7(3)因为ABC是等腰三角形,因此当ABC与DEF相似时,DEF也是等腰三角形如图8,当D、E、F为ABC的三边的中点时,DE为等腰三角形DEF的腰,符合题意,此时BF2.5根据对称性,当F在BC边上的高的垂足时,也符合题意
21、,此时BF4.1如图9,当DE为等腰三角形DEF的底边时,四边形DECF是平行四边形,此时 图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH是ABC的高,D、E、F为ABC的三边的中点,那么四边形DEHF是等腰梯形例 7 如图1,在直角坐标系xOy中,设点A(0,t),点Q(t,b)平移二次函数的图象,得到的抛物线F满足两个条件:顶点为Q;与x轴相交于B、C两点(OBOC),连结A,B(1)是否存在这样的抛物线F,使得?请你作出判断,并说明理由;(2)如果AQBC,且tanABO,求抛物线F对应的二次函数的解析式图1动感体验 请打开几何画板文件名“08杭
22、州24”,拖动点A在y轴上运动,可以体验到,AQ与BC保持平行,OAOB与OAOB保持32双击按钮“t3”,“t06”,“t06”,“t3”,抛物线正好经过点B(或B)思路点拨1数形结合思想,把转化为 2如果AQBC,那么以OA、AQ为邻边的矩形是正方形,数形结合得到tb3分类讨论tanABO,按照A、B、C的位置关系分为四种情况A在y轴正半轴时,分为B、C在y轴同侧和两侧两种情况;A在y轴负半轴时,分为B、C在y轴同侧和两侧两种情况满分解答(1)因为平移的图象得到的抛物线的顶点为(t,b),所以抛物线对应的解析式为因为抛物线与x轴有两个交点,因此令,得,所以)( )| 即所以当时,存在抛物线
23、使得(2)因为AQ/BC,所以tb,于是抛物线F为解得当时,由,得如图2,当时,由,解得此时二次函数的解析式为如图3,当时,由,解得此时二次函数的解析式为 图2 图3如图4,如图5,当时,由,将代,可得,此时二次函数的解析式为或 图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ/BC,所以tb,于是抛物线F为由,得把代入,得(如图2,图5)把代入,得(如图3,图4)2013中考数学压轴题函数等腰三角形问题(一)例1 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D(1)求点D
24、的坐标(用含m的代数式表示);(2)当APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2)当点P从O向C运动时,点H也随之运动请直接写出点H所经过的路长(不必写解答过程)图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,APD的三个顶点有四次机会可以落在对边的垂直平分线上双击按钮“第(3)题”, 拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动双击按钮“第(2)题”可以切换思路点拨1用含m的代数式表示表示APD的三边长,为解等腰三角形做好准备2探求APD是等腰三角形
25、,分三种情况列方程求解3猜想点H的运动轨迹是一个难题不变的是直角,会不会找到不变的线段长呢?RtOHM的斜边长OM是定值,以OM为直径的圆过点H、C满分解答(1)因为PC/DB,所以因此PMDM,CPBD2m所以AD4m于是得到点D的坐标为(2,4m)(2)在APD中,当APAD时,解得(如图3)当PAPD时,解得(如图4)或(不合题意,舍去)当DADP时,解得(如图5)或(不合题意,舍去)综上所述,当APD为等腰三角形时,m的值为,或图3 图4 图5(3)点H所经过的路径长为考点伸展第(2)题解等腰三角形的问题,其中、用几何说理的方法,计算更简单:如图3,当APAD时,AM垂直平分PD,那么
26、PCMMBA所以因此,如图4,当PAPD时,P在AD的垂直平分线上所以DA2PO因此解得第(2)题的思路是这样的:如图6,在RtOHM中,斜边OM为定值,因此以OM为直径的G经过点H,也就是说点H在圆弧上运动运动过的圆心角怎么确定呢?如图7,P与O重合时,是点H运动的起点,COH45,CGH90图6 图7例2 如图1,已知一次函数yx7与正比例函数 的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线l/y轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点
27、R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由 图1 动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,APR的面积有一个时刻等于8观察APQ,可以体验到,P在OC上时,只存在APAQ的情况;P在CA上时,有三个时刻,APQ是等腰三角形思路点拨1把图1复制若干个,在每一个图形中解决一个问题2求APR的面积等于8,按照点P的位置分两种情况讨论事实上,P在CA上运动
28、时,高是定值4,最大面积为6,因此不存在面积为8的可能3讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况满分解答(1)解方程组 得 所以点A的坐标是(3,4)令,得所以点B的坐标是(7,0)(2)如图2,当P在OC上运动时,0t4由,得整理,得解得t2或t6(舍去)如图3,当P在CA上运动时,APR的最大面积为6因此,当t2时,以A、P、R为顶点的三角形的面积为8图2 图3 图4我们先讨论P在OC上运动时的情形,0t4如图1,在AOB中,B45,AOB45,OB7,所以OBAB因此OABAOBB如图4,点P由O向C运动的过程中,OPBRRQ,所以PQ/x轴因
29、此AQP45保持不变,PAQ越来越大,所以只存在APQAQP的情况此时点A在PQ的垂直平分线上,OR2CA6所以BR1,t1我们再来讨论P在CA上运动时的情形,4t7在APQ中, 为定值,如图5,当APAQ时,解方程,得如图6,当QPQA时,点Q在PA的垂直平分线上,AP2(OROP)解方程,得如7,当PAPQ时,那么因此解方程,得综上所述,t1或或5或时,APQ是等腰三角形 图5 图6 图7考点伸展当P在CA上,QPQA时,也可以用来求解2013中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(4, 0),点M、N分别为线段AC和射线
30、AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P(1)求证:MNNP为定值;(2)若BNP与MNA相似,求CM的长;(3)若BNP是等腰三角形,求CM的长图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到BNP与MNA的形状随M的运动而改变双击按钮“BNPMNA”,可以体验到,此刻两个三角形都是直角三角形分别双击按钮“BPBN,N在AB上”、“NBNP”和“BPBN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况思路点拨1第(1)题求证MNNP的值要根据点N的位置分
31、两种情况这个结论为后面的计算提供了方便2第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似3第(3)题探求等腰三角形,要两级(两层)分类,先按照点N的位置分类,再按照顶角的顶点分类注意当N在AB的延长线上时,钝角等腰三角形只有一种情况4探求等腰三角形BNP,N在AB上时,B是确定的,把夹B的两边的长先表示出来,再分类计算满分解答(1)如图2,图3,作NQx轴,垂足为Q设点M、N的运动时间为t秒在RtANQ中,AN5t,NQ4t ,AQ3t在图2中,QO63t,MQ105t,所以MNNPMQQO53在图3中,QO3t6,MQ5t10,所以MNNPMQQO
32、53(2)因为BNP与MNA有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形只有当这两个三角形都是直角三角形时才可能相似如图4,BNPMNA,在RtAMN中,所以解得此时CM 图2 图3 图4(3)如图5,图6,图7中,即所以当N在AB上时,在BNP中,B是确定的,()如图5,当BPBN时,解方程,得此时CM()如图6,当NBNP时,解方程,得此时CM()当PBPN时,解方程,得t的值为负数,因此不存在PBPN的情况如图7,当点N在线段AB的延长线上时,B是钝角,只存在BPBN的可能,此时解方程,得此时CM 图5 图6 图7考点伸展如图6,当NBNP时,
33、NMA是等腰三角形,这样计算简便一些例4 如图1,在矩形ABCD中,ABm(m是大于0的常数),BC8,E为线段BC上的动点(不与B、C重合)连结DE,作EFDE,EF与射线BA交于点F,设CEx,BFy(1)求y关于x的函数关系式; (2)若m8,求x为何值时,y的值最大,最大值是多少?(3)若,要使DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下对照图形和图像,可以看到,当E是BC的中点时,y取得最大值双击按钮“m8”,拖动E到BC的中点,可以体验到,点F是A
34、B的四等分点拖动点A可以改变m的值,再拖动图像中标签为“y随x” 的点到射线yx上,从图形中可以看到,此时DCEEBF思路点拨1证明DCEEBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式2第(2)题的本质是先代入,再配方求二次函数的最值3第(3)题头绪复杂,计算简单,分三段表达一段是说理,如果DEF为等腰三角形,那么得到xy;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值满分解答(1)因为EDC与FEB都是DEC的余角,所以EDCFEB又因为CB90,所以DCEEBF因此,即整理,得y关于x的函数关系为(2)如图2,当m
35、8时,因此当x4时,y取得最大值为2(3) 若,那么整理,得解得x2或x6要使DEF为等腰三角形,只存在EDEF的情况因为DCEEBF,所以CEBF,即xy将xy 2代入,得m6(如图3);将xy 6代入,得m2(如图4) 图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到,那么不论m为何值,当x4时,y都取得最大值对应的几何意义是,不论AB边为多长,当E是BC的中点时,BF都取得最大值第(2)题m8是第(1)题一般性结论的一个特殊性再如,不论m为小于8的任何值,DEF都可以成为等腰三角形,这是因为方程总有一个根的第(3)题是这个一般性结论的一个特殊性2013
36、中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA2,OC3,过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G
37、构成的PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在成立,请说明理由图1动感体验 请打开几何画板文件名“09重庆26”,拖动点G在OC上运动,可以体验到,DCG与DEF保持全等,双击按钮“M的横坐标为1.2”,可以看到,EF2,GO1拖动点P在AB上运动的过程中,可以体验到,存在三个时刻,PCG可以成为等腰三角形思路点拨1用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到2过点M作MNAB,根据对应线段成比例可以求FA的长3将EDC绕点D旋转的过程中,DCG与DEF保持全等4第(3)题反客为主,分三种情况讨论PCG为等腰三角形,根据点P的位置确定点Q的位置,再计
38、算点Q的坐标满分解答(1)由于OD平分AOC,所以点D的坐标为(2,2),因此BCAD1由于BCDADE,所以BDAE1,因此点E的坐标为(0,1)设过E、D、C三点的抛物线的解析式为,那么 解得,因此过E、D、C三点的抛物线的解析式为(2)把代入,求得所以点M的坐标为如图2,过点M作MNAB,垂足为N,那么,即解得图2因为EDC绕点D旋转的过程中,DCGDEF,所以CGEF2因此GO1,EF2GO(3)在第(2)中,GC2设点Q的坐标为如图3,当CPCG2时,点P与点B(3,2)重合,PCG是等腰直角三角形此时,因此。由此得到点Q的坐标为如图4,当GPGC2时,点P的坐标为(1,2)此时点Q
39、的横坐标为1,点Q的坐标为如图5,当PGPC时,点P在GC的垂直平分线上,点P、Q与点D重合此时点Q的坐标为(2,2) 图3 图4 图5考点伸展在第(2)题情景下,EDC绕点D旋转的过程中,FG的长怎样变化?设AF的长为m,那么点F由E开始沿射线EA运动的过程中,FG先是越来越小,F与A重合时,FG达到最小值;F经过点A以后,FG越来越大,当C与O重合时,FG达到最大值4例6 在平面直角坐标系内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM/x轴(如图1所示)点B与点A关于原点对称,直线yxb(b为常数)经过点B,且与直线CM相交于点D,联结OD(1)求b的值和点D的坐标
40、;(2)设点P在x轴的正半轴上,若POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆与圆O外切,求圆O的半径图1动感体验 请打开几何画板文件名“09上海24”,拖动点P在x轴正半轴上运动,可以体验到,POD的形状可以成为等腰三角形,分别双击按钮“PDPO”、“ODOP”和“DODP”可以显示三个等腰三角形在点P运动的过程中,两个圆保持相切,可以体验到,当PDPO时,圆O不存在思路点拨1第(1)题情景简单,内容丰富,考查了对称点的坐标特征、待定系数法、代入求值、数形结合2分三种情况讨论等腰三角形POD的存在性,三个等腰三角形的求解各具特殊性3圆O与圆P的半径、圆心距都是随点P而改变,但是两圆外切,圆心距等于半径和的性质不变