《2021年湖北省荆州市中考数学试卷.docx》由会员分享,可在线阅读,更多相关《2021年湖北省荆州市中考数学试卷.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1荆州市 2021 年初中学业水平考试数学试题数学试题一、选择题1.有理数2的相反数是()A.2B.12C.2D.122.下列四个几何体中,俯视图与其他三个不同的是()A.B.C.D.3.在平面直角坐标系中,一次函数1yx的图像是()A.B.C.D.4.将一张矩形纸片折叠成如图所示的图形,若30CAB,则ACB的度数是()A.45B.55C.65D.755.八年级学生去距学校 10km 的荆州博物馆参观,一部分学生骑自行车先走,过了 20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的 2 倍,求骑车学生的速度,若设骑车学生的速度为 xkm/h,则可列方程为()
2、2A.1010202xxB.1010202xxC.1010123xxD.1010123xx6.若 x 为实数,在31x的中添上一种运算符号(在,、中选择)后,其运算的结果是有理数,则 x 不可能的是()A.31B.31C.2 3D.137.如图,点 E 在菱形 ABCD 的 AB 边上,点 F 在 BC 边的延长线上,连接 CE,DF,对于下列条件:BECF,CEAB DFBCCEDFBCECDF只选其中一个添加,不能确定的是()A.B.C.D.8.如图,在平面直角坐标系中,Rt OAB的斜边 OA 在第一象限,并与 x 轴的正半轴夹角为 30 度,C 为OA 的中点,BC=1,则 A 点的坐
3、标为()A.3,3B.3,1C.2,1D.2,39.定义新运算a b,对于任意实数 a,b 满足1a babab,其中等式右边是通常的加法、减法、乘法运算,例如4 3(43)(43)17 16 ,若x kx(k 为实数)是关于 x 的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根10.如图,在6 6正方形网格中,每个小正方形的边长都是 1,点 A,B,C 均在网格交点上,O是ABC的外接圆,则cosBAC的值是()3A.55B.2 55C.12D.32二、填空题11.若1012020,32abc ,则 a,b,c 的大小关系是_.(用0),
4、其他条件不变,则_OABCS;类比猜想:若直线 y=a(a0)交函数(0)kykx的图像于 A,B 两点,连接 OA,过点 B 作 BC/OA 交 x 轴于 C,则_OABCS;22.如图矩形 ABCD 中,AB=20,点 E 是 BC 上一点,将ABE沿着 AE 折叠,点 B 刚好落在 CD 边上的点 G处,点 F 在 DG 上,将ADF沿着 AF 折叠,点 D 刚好落在 AG 上点 H 处,此时:2:3CFEAFHSS.(1)求证:EGCGFH(2)求 AD 的长;(3)求tanGFH的值。23.为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共 500 吨,乙厂的生产量是甲厂的 2
5、倍少 100吨,这批防疫物资将运往 A 地 240 吨,B 地 260 吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往 A 地 x 吨,全部运往 A,B 两地的总运费为 y 元,求 y 与 x 之间的函数关系式,并设计使总运费最少的调运方案;7(3)当每吨运费降低 m 元,(0m15且 m 为整数),按(2)中设计的调运方案运输,总运费不超过 5200元,求 m 的最小值.24.如图 1,在平面直角坐标系中,2,1,3,1AB,以 O 为圆心,OA 的长为半径的半圆 O 交 AO 的延长线于 C,连接 AB,BC,过 O 作 ED/BC 分别交 A
6、B 和半圆 O 于 E,D,连接 OB,CD.(1)求证:BC 是半圆 O 的切线;(2)试判断四边形 OBCD 的形状,并说明理由;(3)如图 2,若抛物线经过点 D,且顶点为 E,求此抛物线的解析式;点 P 是此抛物线对称轴上的一动点,以 E,D,P 为顶点的三角形与OAB相似,问抛物线上是否存在点 Q,使得EPQOABSS,若存在,请直接写出 Q 点的横坐标;若不存在,说明理由.试题答案部分试题答案部分一、选择题AACDC;CCBCB二、填空题11.bac12.213.线段的垂直平分线的性质14.2315.2416.1,0或2,0或0,2三解答题17.解:(1)原式=21(1)(1)(1
7、)aaaaa1aa(2)不等式的解集为24a,所以 a 的最小值为 2所以原式=32818.续解:229t 23t 解得121,5tt 221txx 221xx,2(1)2x1212,12xx 经检验都是方程的解19.(1)证明:,60ABCDBEABDCBE ,ABBDABD是等边三角形所以60DAB,/CBEDAB BCAD;(2)依题意得:AD=BD=4,BC=BE=1,所以 A,C 两点经过的路径长之和为6046015180180320 解:(1)2,90,90,90abcd(2)七八年级成绩的众数和中位数相同,但是八年级的平均成绩比七年级的高,且从方差看,八年级的成绩整齐,综上八年级
8、成绩较好.21.解:(1)m=1(2)函数图像关于 y 轴对称;当0 x 时,y 随 x 增大而减少;函数的图像无限接近坐标轴,但不与其相交;函数没有最大值等等(3)4,4,2k922.(1)证明:因为四边形 ABCD 是矩形所以90BDC 90GHFC,90EGCHGF90GFHHGFEGCGFHEGCGFH(2)解::2:3CFMAFMSS:2:3GH AH20AGGHAHAB8,12GHAH12ADAH(3)解:在直角三角形 ADG 中,2222201216DGAGAD由折叠对称性知DHHFx,16GHx222GHHFGF2228(16)xx解得:x=6,所以 HF=610在直角三角形
9、GHF 中,4tan3GHGFHHF.23.解:(1)设这批防疫物资甲厂生产了 a 吨,乙厂生产了 b 吨;则5002100abab解得:200,300ab(2)20(240)25260(300)1524(300)yxxxx411000 x 024003000400 xxxx40240 x当 x=240 时运费最小所以总运费的方案是:甲厂 200 吨全部运往 B 地;乙厂运往 A 地 240 吨,运往 B 地 60 吨.(3)由(2)知411000500yxm 当 x=240 时,4 240 11000500=10040-500mym 最小,100405005200m9.68m所以 m 的最小
10、值为 10.24.(1)如图 1,设 AB 与 y 轴交于点 M,则 AM=2,OM=1,AB=5则5OAOC/OEBCOE是三角形的中位线所以15,222AEABBCEO,11,1,122EMEOM2252OEOMME25BCOE11222222 5525ACBCABABC是直角三角形即BCAC所以 BC 是半圆的 O 的切线;(2)四边形 OBCD 是平行四边形由图知:5BCOOA/ODBC所以四边形 OBCD 是平行四边形.(3)由(2)知:5ODOAE 为 AB 的中点,过点 D 作DNy轴,DN/ME,ODNOEMONDNODOMMEOE511522ONDN2,1ONDN1,2D设此抛物线的解析式为21()12ya x则211122a 43a所以此抛物线的解析式为2442333yxx12