《【高考讲坛】2016届高考数学一轮复习 第8章 第5节 椭圆课后限时自测 理 苏教版.doc》由会员分享,可在线阅读,更多相关《【高考讲坛】2016届高考数学一轮复习 第8章 第5节 椭圆课后限时自测 理 苏教版.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【高考讲坛】2016届高考数学一轮复习 第8章 第5节 椭圆课后限时自测 理 苏教版A级基础达标练一、填空题1在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且ABF2的周长为16,那么椭圆C的方程为_解析设椭圆方程为1(ab0),由e知,故.由于ABF2的周长为|AB|BF2|AF2|(|AF1|AF2|)(|BF1|BF2|)4a16,故a4.b28.椭圆C的方程为1.答案12(2013四川高考改编)从椭圆1(ab0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且ABOP(
2、O是坐标原点),则该椭圆的离心率是_解析设P(c,y0)代入椭圆方程求得y0,从而求得kOP,由kOPkAB及e可得离心率e.由题意设P(c,y0),将P(c,y0)代入1,得1,则yb2b2.y0或y0(舍去),P,kOP.A(a,0),B(0,b),kAB.又ABOP,kABkOP,bc.e.答案3(2014辽宁高考)已知椭圆C:1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|BN|_.解析椭圆1中,a3.如图,设MN的中点为D,则|DF1|DF2|2a6.D,F1,F2分别为MN,AM,BM的中点,|BN|2|DF2|,|AN|2|DF1|
3、,|AN|BN|2(|DF1|DF2|)12.答案124(2014南京调研)图853如图853,已知过椭圆1(ab0)的左顶点A(a,0)作直线l交y轴于点P,交椭圆于点Q,若AOP是等腰三角形,且2,则椭圆的离心率为_解析AOP为等腰三角形,OAOP,故A(a,0),P(0,a),又2,Q,由Q在椭圆上得1,解得.e.答案5(2014南京质检)已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2y22x150的半径,则椭圆的标准方程是_解析由x2y22x150,知r42aa2.又e,c1,则b2a2c23.因此椭圆的标准方程为1.答案16(2013辽宁高考改编)已知椭圆C:1(ab0
4、)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|10,|BF|8,cosABF,则椭圆C的离心率为_解析在ABF中,由余弦定理得|AF|2|AB|2|BF|22|AB|BF|cosABF,|AF|21006412836,|AF|6,从而|AB|2|AF|2|BF|2,则AFBF.c|OF|AB|5,利用椭圆的对称性,设F为右焦点,则|BF|AF|6,2a|BF|BF|14,a7.因此椭圆的离心率e.答案7已知F1,F2是椭圆C:1(ab0)的两个焦点,P为椭圆C上的一点,且.若PF1F2的面积为9,则b_.解析由定义,|PF1|PF2|2a,且,|PF1|2|P
5、F2|2|F1F2|24c2,(|PF1|PF2|)22|PF1|PF2|4c2,2|PF1|PF2|4a24c24b2,|PF1|PF2|2b2.SPF1F2|PF1|PF2|2b29,因此b3.答案38(2013大纲全国卷改编)已知F1(1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|3,则C的方程为_解析依题意,设椭圆C:1(ab0)过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|3,点A必在椭圆上,1.又由c1,得1b2a2.由联立,得b23,a24.故所求椭圆C的方程为1.答案1二、解答题9(2014镇江质检)已知椭圆C1:
6、y21,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,2,求直线AB的方程解(1)设椭圆C2的方程为1(a2),其离心率为,故,解得a4.故椭圆C2的方程为1.(2)法一:A,B两点的坐标分别记为(xA,yA),(xB,yB),由2及(1)知,O、A、B三点共线且点A、B不在y轴上,因此可设直线AB的方程为ykx.将ykx代入y21中,得(14k2)x24,所以x.将ykx代入1中,得(4k2)x216,所以x.又由2,得x4x,即,解得k1.故直线AB的方程为yx或yx.法二:A,B两点的坐标分别记为(xA,y
7、A),(xB,yB),由2及(1)知,O、A、B三点共线且点A、B不在y轴上,因此可设直线AB的方程为ykx.将ykx代入y21中,得(14k2)x24,所以x.由2,得x,y.将x,y代入1中,得1,即4k214k2,解得k1.故直线AB的方程为yx或yx.10(2014安徽高考)设F1,F2分别是椭圆E:1(ab0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|3|F1B|.(1)若|AB|4,ABF2的周长为16,求|AF2|;(2)若cosAF2B,求椭圆E的离心率解(1)由|AF1|3|F1B|,|AB|4,得|AF1|3,|F1B|1.因为ABF2的周长为16,所以由
8、椭圆定义可得4a16,|AF1|AF2|2a8.故|AF2|2a|AF1|835.(2)设|F1B|k,则k0且|AF1|3k,|AB|4k.由椭圆定义可得|AF2|2a3k,|BF2|2ak.在ABF2中,由余弦定理可得|AB|2|AF2|2|BF2|22|AF2|BF2|cosAF2B,即(4k)2(2a3k)2(2ak)2(2a3k)(2ak),化简可得(ak)(a3k)0.而ak0,故a3k.于是有|AF2|3k|AF1|,|BF2|5k.因此|BF2|2|F2A|2|AB|2,可得F1AF2A,故AF1F2为等腰直角三角形从而ca,所以椭圆E的离心率e.B级能力提升练一、填空题1(2
9、014安徽高考)设F1,F2分别是椭圆E:x21(0bb0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解(1)根据c及题设知M,2b23ac.将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即代入C的方程,得1.将及c代入得1.解得a7,b24a28,故a7,b2.8