《半导体物理第三章.ppt》由会员分享,可在线阅读,更多相关《半导体物理第三章.ppt(87页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、半导体物理第三章现在学习的是第1页,共87页l完整的半导体中电子的能级构成能带,有杂质和缺陷的完整的半导体中电子的能级构成能带,有杂质和缺陷的半导体在禁带中存在半导体在禁带中存在局部化的能级局部化的能级 l实践证明:实践证明:半导体的导电性强烈地随着温度及其内部杂质半导体的导电性强烈地随着温度及其内部杂质含量变化,主要是由于半导体中载流子数目随着温度和杂含量变化,主要是由于半导体中载流子数目随着温度和杂质含量变化质含量变化l本章重点讨论本章重点讨论:1 1、热平衡情况下热平衡情况下载流子在各种能级上的分布情况载流子在各种能级上的分布情况 2 2、计算导带电子和价带空穴的数目,分析它们与半导体中
2、、计算导带电子和价带空穴的数目,分析它们与半导体中杂质含量和温度的关系杂质含量和温度的关系现在学习的是第2页,共87页3.1 3.1 状态密度状态密度l状态密度状态密度l计算步骤计算步骤l计算单位计算单位k k空间中的量子态数空间中的量子态数(即即k k空间的量子态密度空间的量子态密度);l计算单位能量范围所对应的计算单位能量范围所对应的k k空间体积;空间体积;l计算单位能量范围内的量子态数;计算单位能量范围内的量子态数;l求得状态密度。求得状态密度。定义:能带中能量定义:能带中能量E附近单位能量范围内的电子状态数附近单位能量范围内的电子状态数(量子态数)(量子态数)现在学习的是第3页,共8
3、7页3.1.1 k3.1.1 k空间中量子态的分布空间中量子态的分布n先计算单位先计算单位k k空间的量子态密度空间的量子态密度对于边长为对于边长为L L,晶格常数为,晶格常数为a a的立方晶体的立方晶体nk kx x=2n=2nx x/L,k/L,ky y=2n=2ny y/L,k/L,kz z=2n=2nz z/L/L(n(nx x,n,ny,y,n,nz z=0,1,2,=0,1,2,)由每一组整数由每一组整数(nx,ny,nz)决定一个波矢决定一个波矢k,代表电子不,代表电子不同的能量状态,同的能量状态,k在空间分布是均匀的,每个代表点的坐标,在空间分布是均匀的,每个代表点的坐标,沿坐
4、标轴方向都是沿坐标轴方向都是2/L的整数倍,对应着的整数倍,对应着k空间中一个体空间中一个体积为积为 的立方体。也就是说,单位体积的的立方体。也就是说,单位体积的k空空间可以包含的量子状态为间可以包含的量子状态为 。如果考虑电子的自旋,。如果考虑电子的自旋,则则单位单位k空间包含的电子量子状态数即单位空间包含的电子量子状态数即单位k空间量子态空间量子态密度为密度为现在学习的是第4页,共87页K K空间中的量子态分布图空间中的量子态分布图现在学习的是第5页,共87页l计算不同半导体的状态密度计算不同半导体的状态密度导带底导带底E(k)E(k)与与k k的关系(单极值,球形等能面)的关系(单极值,
5、球形等能面)把能量函数看做是连续的把能量函数看做是连续的,则能量则能量E EE+dEE+dE之间包含的之间包含的k k空间体积为空间体积为4kdk,4kdk,所以包含的量子态总数为所以包含的量子态总数为 其中其中3.1.2 3.1.2 状态密度状态密度2现在学习的是第6页,共87页3.1.2 3.1.2 状态密度状态密度代入得到:代入得到:l根据公式,各向同性半导体导带底附近状态密度:根据公式,各向同性半导体导带底附近状态密度:l价带顶附近状态密度价带顶附近状态密度现在学习的是第7页,共87页现在学习的是第8页,共87页l对于各向异性,等能面为椭球面的情况对于各向异性,等能面为椭球面的情况 设
6、导带底共有设导带底共有s s个对称椭球,个对称椭球,导带底附近状态密度为:导带底附近状态密度为:对硅、锗等半导体,其中的对硅、锗等半导体,其中的lmdn称为称为导带底电子状态密度有效质量导带底电子状态密度有效质量。对于对于Si,导带底有六个对称状态,导带底有六个对称状态,s=6,mdn=1.08m0对于对于Ge,s=4,mdn=0.56m03.1.2 3.1.2 状态密度状态密度现在学习的是第9页,共87页l同理可得价带顶附近的情况同理可得价带顶附近的情况l价带顶附近价带顶附近E(k)E(k)与与k k关系关系l价带顶附近状态密度也可以写为:价带顶附近状态密度也可以写为:但对硅、锗这样的半导体
7、,价带是多个能带简并的,但对硅、锗这样的半导体,价带是多个能带简并的,相应的有重和轻两种空穴有效质量,所以公式中的相应的有重和轻两种空穴有效质量,所以公式中的m mp p*需要变化为一种新的形式。需要变化为一种新的形式。3.1.2 3.1.2 状态密度状态密度现在学习的是第10页,共87页l对硅和锗,式中的对硅和锗,式中的 lmdp称为称为价带顶空穴状态密度有效质量价带顶空穴状态密度有效质量l对于对于Si,mdp=0.59m0l对于对于Ge,mdp=0.37m03.1.2 3.1.2 状态密度状态密度现在学习的是第11页,共87页3.2 3.2 费米能级和载流子的统计分布费米能级和载流子的统计
8、分布3.2.1 3.2.1 导出费米分布函数的条件导出费米分布函数的条件把半导体中的电子看作是近独立体系把半导体中的电子看作是近独立体系,即认为电子之间的即认为电子之间的相互作用很微弱相互作用很微弱.电子的运动是服从量子力学规律的电子的运动是服从量子力学规律的,用量子态描述它们的运动状态用量子态描述它们的运动状态.电子的能量是量子化的电子的能量是量子化的,即即其中一个量子态被电子占据其中一个量子态被电子占据,不影响其他的量子态被电子占据不影响其他的量子态被电子占据.并且每一能级可以认为是双重简并的并且每一能级可以认为是双重简并的,这对应于自旋的两个这对应于自旋的两个容许值容许值.在量子力学中在
9、量子力学中,认为同一体系中的电子是全同的认为同一体系中的电子是全同的,不可分辨的不可分辨的.电子在状态中的分布电子在状态中的分布,要受到泡利不相容原理要受到泡利不相容原理的限制的限制.适合上述条件的量子统计适合上述条件的量子统计,称为费米称为费米-狄拉克统计狄拉克统计.现在学习的是第12页,共87页3.2.2 3.2.2 费米分布函数和费米能级费米分布函数和费米能级 费米费米-狄拉克统计分布狄拉克统计分布 热平衡时热平衡时,能量为能量为E E的任意能级被电子占据的几率为的任意能级被电子占据的几率为其中其中,f(E)f(E)被称为费米分布函数被称为费米分布函数,它描述每个量子态被电它描述每个量子
10、态被电子占据的几率随子占据的几率随E E的变化的变化.k.k0 0是波尔兹曼常数是波尔兹曼常数,T T是绝对温是绝对温度度,E EF F是一个待定参数是一个待定参数,具有能量的量纲具有能量的量纲,称为费米能级称为费米能级或或费米能量。费米能量。现在学习的是第13页,共87页 E EF F的确定的确定.在整个能量范围内所有量子态被电子占据的量子在整个能量范围内所有量子态被电子占据的量子态数等于实际存在的电子总数态数等于实际存在的电子总数N N,则有则有E EF F是反映电子在各个能级中分布情况的参数。是反映电子在各个能级中分布情况的参数。与与E EF F相关的因素相关的因素:半导体导电的类型;半
11、导体导电的类型;杂质的含量;杂质的含量;与温度与温度T T有关有关;能量零点的选取。能量零点的选取。3.2.2 3.2.2 费米分布函数和费米能级费米分布函数和费米能级现在学习的是第14页,共87页(2)E(2)EF F的实质和物理意义的实质和物理意义 费米能级费米能级E EF F是半导体中大量电子构成的热力学系统是半导体中大量电子构成的热力学系统的化学势。的化学势。代表系统的化学势代表系统的化学势,F F是系统的自由能是系统的自由能.意义意义:热平衡时热平衡时,系统每增加一个电子系统每增加一个电子,引起的系统自由能引起的系统自由能的变化的变化,等于系统的化学势等于系统的化学势,即系统的费米能
12、级即系统的费米能级.处于热平衡状态的系统有统一的化学势处于热平衡状态的系统有统一的化学势,所以处于所以处于热平热平衡状态的电子系统衡状态的电子系统,有统一的费米能级有统一的费米能级.3.2.2 3.2.2 费米分布函数和费米能级费米分布函数和费米能级现在学习的是第15页,共87页 逐渐减小逐渐减小,而空着的几率而空着的几率 则逐渐增大,即电子则逐渐增大,即电子优先占据能量较低的能级。优先占据能量较低的能级。量子态量子态空着的,或被电子占据的空着的,或被电子占据的 能量为能量为E E的量子态未被电子占据的量子态未被电子占据(空着空着)的几率是:的几率是:费米分布函数的性质费米分布函数的性质:随着
13、能量随着能量E E的增加的增加,每个量子态被电子占据的几率每个量子态被电子占据的几率当当E E等于等于E EF F时时,有有 空穴的费米分布函数空穴的费米分布函数3.2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第16页,共87页 E EF F实际上是一个参考能级实际上是一个参考能级,低于低于E EF F的能级被电子占据的的能级被电子占据的几率大于空着的几率几率大于空着的几率;高于高于E EF F的量子态的量子态,被电子占据的几率则被电子占据的几率则小于空着的几率小于空着的几率.从图中可以看出从图中可以看出,函数函数 和和 相对于费米能级相对于费米能级是对称的。是对称的。3.
14、2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第17页,共87页当当T T=0=0K K时时,当当T T00K K时时,E EF F标志着电子填充能级的水平标志着电子填充能级的水平 可见,随着温度的增加,可见,随着温度的增加,E EF F以上能级被电子占据的几以上能级被电子占据的几率增加,其物理意义在于温度升高使晶格热振动加剧,晶格率增加,其物理意义在于温度升高使晶格热振动加剧,晶格原子传递给电子的能量增加使电子占据高能级的几率增加,原子传递给电子的能量增加使电子占据高能级的几率增加,因此温度升高使半导体导带电子增多,导电性趋于加强。因此温度升高使半导体导带电子增多,导电性趋
15、于加强。小结:小结:可以认为在温度不很高时,能量大于费米能级的量可以认为在温度不很高时,能量大于费米能级的量子态基本没有电子占据,而能量小于费米能级的量子态基子态基本没有电子占据,而能量小于费米能级的量子态基本为电子占据,所以费米能级的位置比较直观地标志了电本为电子占据,所以费米能级的位置比较直观地标志了电子占据量子态的情况,即子占据量子态的情况,即3.2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第18页,共87页 E-EE-EF FkTkT时时,此时分布函数的形式就是此时分布函数的形式就是电子的玻耳兹曼分布函数电子的玻耳兹曼分布函数.对于能级比对于能级比E EF F高很多
16、的量子态高很多的量子态,被电子占据的几率非常小被电子占据的几率非常小,因此泡利不相容原理的限制显得就不重要了因此泡利不相容原理的限制显得就不重要了.物理意义物理意义在半导体中,最常遇到的情况是费米能级在半导体中,最常遇到的情况是费米能级E EF F位位于禁带内,且与导带底或价带顶的距离远大于于禁带内,且与导带底或价带顶的距离远大于k k0 0T T,所以对,所以对导带中的所有量子态来说,被电子占据的概率一般都满导带中的所有量子态来说,被电子占据的概率一般都满足玻耳兹曼分布函数。随着能量足玻耳兹曼分布函数。随着能量E E的增大,的增大,f(E)f(E)迅速减迅速减小,所以导带中绝大多数电子分布在
17、导带底附近。小,所以导带中绝大多数电子分布在导带底附近。3.2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第19页,共87页 E EF F-E EkTkT时时,上式给出的是能级比上式给出的是能级比E EF F低很多的量子态低很多的量子态,被空穴占据的几被空穴占据的几率,称为率,称为空穴的玻耳兹曼分布函数空穴的玻耳兹曼分布函数。物理意义物理意义对半导体价带中的所有量子态来说,被空对半导体价带中的所有量子态来说,被空穴占据的概率,一般都满足空穴的玻耳兹曼分布函数。穴占据的概率,一般都满足空穴的玻耳兹曼分布函数。由于能量由于能量E E的增大,的增大,1-f(E)1-f(E)也迅速增
18、大,所以价带中绝大多也迅速增大,所以价带中绝大多数空穴分布在价带顶附近。数空穴分布在价带顶附近。3.2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第20页,共87页l非简并半导体和简并半导体非简并半导体和简并半导体 非简并半导体非简并半导体:指导带指导带电子或价带空穴数量少电子或价带空穴数量少,载流,载流子在能级上的分布可以用子在能级上的分布可以用玻耳兹曼分布玻耳兹曼分布描述的半导体,描述的半导体,其特征是其特征是费米能级费米能级E EF F处于禁带之中,并且远离导带处于禁带之中,并且远离导带底底EcEc和价带顶和价带顶EvEv。简并半导体简并半导体:是指导带:是指导带电子或
19、价带空穴数量很多电子或价带空穴数量很多,载流,载流子在能级上的分布只能子在能级上的分布只能用用费米分布费米分布来描述的半导体,来描述的半导体,其特征是其特征是E EF F接近于接近于EcEc或或EvEv,或者,或者E EF F进入导带或价带之中。进入导带或价带之中。3.2.3 3.2.3 费米分布函数性质费米分布函数性质现在学习的是第21页,共87页 为了计算单位体积中导带电子和价带空穴的数目为了计算单位体积中导带电子和价带空穴的数目,即即半导体的半导体的载流子浓度载流子浓度,必须先解决下述两个问题必须先解决下述两个问题:A.A.能带中能容纳载流子的量子态数目(由状态密度能带中能容纳载流子的量
20、子态数目(由状态密度给出)给出);B.B.载流子占据这些状态的概率(即分布函数)载流子占据这些状态的概率(即分布函数).3.2.4 3.2.4 导带中的电子浓度和价带中的空穴浓度导带中的电子浓度和价带中的空穴浓度现在学习的是第22页,共87页1 1、非简并半导体的导带电子浓度、非简并半导体的导带电子浓度n n0 0 单位体积半导体中能量在单位体积半导体中能量在E E-E E+dEdE范围内的导带电范围内的导带电子数为子数为:整个导带中的电子浓度为整个导带中的电子浓度为 因为因为 随着能量的增加而迅速减小随着能量的增加而迅速减小,所以把积分范所以把积分范围由导带顶围由导带顶E EC C一直延伸到
21、正无穷一直延伸到正无穷,并不会引起明显的误差并不会引起明显的误差.实际上对积分真正有贡献的只限于导带底附近的区域实际上对积分真正有贡献的只限于导带底附近的区域.于于是是,热平衡状态下非简并半导体导带的电子浓度热平衡状态下非简并半导体导带的电子浓度n n0 0为为现在学习的是第23页,共87页引入变数引入变数,上式可以写成上式可以写成把积分把积分代入上式中代入上式中,有有现在学习的是第24页,共87页若令若令则则热平衡状态下非简并半导体的导带电子浓度热平衡状态下非简并半导体的导带电子浓度n n0 0可表示为可表示为N NC C称为称为导带的有效状态密度导带的有效状态密度,显然有,显然有 导带电子
22、浓度可理解为导带电子浓度可理解为:把导带中所有的量子态都把导带中所有的量子态都集中在导带底集中在导带底EcEc,而它的有效状态密度为,而它的有效状态密度为NcNc,则导带中的,则导带中的电子浓度就是服从波尔兹曼分布的电子浓度就是服从波尔兹曼分布的NcNc个状态中有电子占据个状态中有电子占据的量子态数。的量子态数。现在学习的是第25页,共87页2 2、非简并半导体的价带空穴浓度、非简并半导体的价带空穴浓度p p0 0 单位体积中单位体积中,能量在能量在E EE+dEE+dE范围内的价带空穴数范围内的价带空穴数d dp p为为则则热平衡状态下的非简并半导体的价带空穴浓度热平衡状态下的非简并半导体的
23、价带空穴浓度为为称为称为价带的有效状态密度且价带的有效状态密度且现在学习的是第26页,共87页 导带和价带有效状态密度是很重要的量导带和价带有效状态密度是很重要的量,根据它可根据它可以衡量能带中量子态的填充情况以衡量能带中量子态的填充情况.如如:n0kT0k时,电子从价带时,电子从价带激发到导带,称为本征激发。此时导带中的电子浓度等激发到导带,称为本征激发。此时导带中的电子浓度等于价带中的空穴浓度,即于价带中的空穴浓度,即现在学习的是第31页,共87页3.3 3.3 本征半导体的载流子浓度本征半导体的载流子浓度3.3.2 3.3.2 本征费米能级本征费米能级由电子和空穴浓度的表达式和电中性条件
24、可以得到由电子和空穴浓度的表达式和电中性条件可以得到 两端取对数后两端取对数后,得得E Ei i表示本征半导体的费米能级表示本征半导体的费米能级.当当,E Ei i恰好位于禁带中央恰好位于禁带中央.(图)图)EcEiEv本征半导体本征半导体现在学习的是第32页,共87页3.3 3.3 本征半导体的载流子浓度本征半导体的载流子浓度实际上实际上N NC C和和N NV V并不相等并不相等,是是1 1的数量级,所以的数量级,所以EiEi在禁带中央上下约为在禁带中央上下约为kTkT的范围之内的范围之内.在室温下在室温下(300K),(300K),它与半导体的禁带宽度相它与半导体的禁带宽度相比还是很小的
25、,如:比还是很小的,如:SiSi的的EgEg1.12 eV1.12 eV。例例:室温时硅室温时硅(S Si i)的的E Ei i就位于禁带中央之下约为就位于禁带中央之下约为0.01eV0.01eV的地方的地方.也有少数半导体也有少数半导体,E Ei i相对于禁带中央的偏离较明显相对于禁带中央的偏离较明显.如锑化铟如锑化铟,在室温下在室温下,本征费米能级移向导带本征费米能级移向导带现在学习的是第33页,共87页3.3 3.3 本征半导体的载流子浓度本征半导体的载流子浓度3.3.3 3.3.3 本征载流子浓度本征载流子浓度 上式表明,上式表明,本征载流子浓度只与半导体本身的能带结本征载流子浓度只与
26、半导体本身的能带结构和温度构和温度T T 有关,与所含杂质无关。有关,与所含杂质无关。在一定温度下,禁带在一定温度下,禁带宽度越窄的半导体,本征载流子浓度越大。对于一定的半宽度越窄的半导体,本征载流子浓度越大。对于一定的半导体,本征载流子浓度随着温度的升高而迅速增加。导体,本征载流子浓度随着温度的升高而迅速增加。*现在学习的是第34页,共87页3.3 3.3 本征半导体的载流子浓度本征半导体的载流子浓度 表中列出室温下硅、锗、砷化镓三种半导体材料的表中列出室温下硅、锗、砷化镓三种半导体材料的禁带宽度和本征载流子浓度的数值禁带宽度和本征载流子浓度的数值.在室温下在室温下(300(300K K),
27、Si),Si、Ge Ge、GaAsGaAs的本征载流子浓度和禁带宽度的本征载流子浓度和禁带宽度 Si Ge GaAs ni(cm-3)Eg(eV)1.12 0.67 1.43 我们把载流子浓度的乘积我们把载流子浓度的乘积n0p0n0p0用本征载流子浓度用本征载流子浓度n ni i表示出来表示出来,得得 在热平衡情况下在热平衡情况下,若已知若已知n ni i和一种载流子浓度和一种载流子浓度,则可以利则可以利用上式求出另一种载流子浓度用上式求出另一种载流子浓度.现在学习的是第35页,共87页3.3 3.3 本征半导体的载流子浓度本征半导体的载流子浓度3.3.4 3.3.4 电子和空穴浓度的另一种形
28、式电子和空穴浓度的另一种形式 把电子和空穴浓度公式用本征载流子浓度把电子和空穴浓度公式用本征载流子浓度n ni i(或或p pi i)和本和本征费米能级征费米能级E Ei i可写成下面的形式可写成下面的形式:现在学习的是第36页,共87页已学过的两套求解载流子浓度的公式:已学过的两套求解载流子浓度的公式:现在学习的是第37页,共87页3.4 3.4 杂质半导体的载流子浓度杂质半导体的载流子浓度3.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率 能带中的电子能带中的电子是作共有化运动的电子是作共有化运动的电子,它们的运动范它们的运动范围延伸到整个晶体围延伸到整个晶体,与电子空间运动对应
29、的每个能级与电子空间运动对应的每个能级,存存在自旋相反的两个量子态在自旋相反的两个量子态.由于电子之间的作用很微弱由于电子之间的作用很微弱,电电子占据这两个量子态是相互独立的子占据这两个量子态是相互独立的.能带中的电子在状态中的分布是服从能带中的电子在状态中的分布是服从费米分布费米分布的的.现在学习的是第38页,共87页3.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率 杂质上的电子杂质上的电子态与上述情形不同态与上述情形不同,它们是束缚在状态中它们是束缚在状态中的的局部化量子态局部化量子态.以类氢施主为例以类氢施主为例,当基态未被占据时当基态未被占据时,由于电子自旋方由于电子自旋方
30、向的不同而可以有两种方式占据状态向的不同而可以有两种方式占据状态,但是一旦有一个电但是一旦有一个电子以某种自旋方式占据了该能级子以某种自旋方式占据了该能级,就不再可能有第二个就不再可能有第二个电子占据另一种自旋状态电子占据另一种自旋状态.因为在施主俘获一个电子之因为在施主俘获一个电子之后后,静电力将把另一个自旋状态提到很高的能量静电力将把另一个自旋状态提到很高的能量,(,(因为因为电子态是局域化的,电子间相互作用很强),电子态是局域化的,电子间相互作用很强),基于上述基于上述由自旋引起的由自旋引起的简并简并,不能用费米分布函数来确定电子占据不能用费米分布函数来确定电子占据施主能级的几率施主能级
31、的几率.现在学习的是第39页,共87页杂质能级上电子和空穴的占据几率:杂质能级上电子和空穴的占据几率:施主能级的两种状态:被电子占据,对应施主未施主能级的两种状态:被电子占据,对应施主未电离;不被电子占据,对应施主电离态。电离;不被电子占据,对应施主电离态。施主能级施主能级E Ed d被电子占据的几率被电子占据的几率f fD D(E)(E)(施主未电离几率)(施主未电离几率)施主能级施主能级E Ed d不被电子占据即施主电离的几率为不被电子占据即施主电离的几率为3.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率现在学习的是第40页,共87页受主能级被空穴占据即受主未电离几率受主能级被
32、空穴占据即受主未电离几率fA(E)受主能级不被空穴占据即受主电离几率受主能级不被空穴占据即受主电离几率(受主电离态受主电离态)(2 2)受主能级的两种状态:未被电子占据,相当于被受主能级的两种状态:未被电子占据,相当于被空穴占据,即受主未电离;被电子占据,相当于失去空穴,空穴占据,即受主未电离;被电子占据,相当于失去空穴,即受主电离态。即受主电离态。3.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率现在学习的是第41页,共87页 施主能级上的电子浓度施主能级上的电子浓度n nD D为为施主上有电子占据时施主上有电子占据时,它们是电中性的它们是电中性的,所以所以n nD D也就是中性也
33、就是中性施主浓度施主浓度(或称未电离的施主浓度或称未电离的施主浓度).).电离施主浓度电离施主浓度,也就是能级空着的施主浓度(正电中心也就是能级空着的施主浓度(正电中心浓度)浓度),可以写为可以写为3.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率现在学习的是第42页,共87页 受主能级上的空穴浓度受主能级上的空穴浓度p pA A为为受主上没有接受电子时受主上没有接受电子时,它们是电中性的它们是电中性的,所以所以p pA A也就是中也就是中性受主浓度性受主浓度(或称未电离的受主浓度或称未电离的受主浓度).).电离受主浓度电离受主浓度,也也就是能级被电子占据的受主浓度就是能级被电子占据
34、的受主浓度,可以写为可以写为式中式中gdgd是施主能级的基态简并度,是施主能级的基态简并度,g gA A是受主能级的基态简是受主能级的基态简并度,通常称为简并因子,对硅、锗、砷化镓等材料,并度,通常称为简并因子,对硅、锗、砷化镓等材料,g gd d=2=2,g gA A=4=43.4.1 3.4.1 杂质能级的占据几率杂质能级的占据几率现在学习的是第43页,共87页3.4 3.4 杂质半导体的载流子浓度杂质半导体的载流子浓度3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度 只含一种施主杂质的只含一种施主杂质的N N型半导体型半导体(其能级分布如图所示其能级分布如图所示)中,
35、中,除了电子由价带跃迁到导带的除了电子由价带跃迁到导带的本征激发本征激发之外,还存在施主之外,还存在施主能级上的电子激发到导带的过程,即能级上的电子激发到导带的过程,即杂质电离杂质电离.只含一种施主杂质的半导体只含一种施主杂质的半导体 EC Ed EV本征激发:本征激发:Eg杂质电离:杂质电离:EI多子:电子多子:电子少子:空穴少子:空穴现在学习的是第44页,共87页 杂质电离和本征激发是发生在不同的温度范围杂质电离和本征激发是发生在不同的温度范围.在在低温下,主要是电子由施主能级激发到导带的杂低温下,主要是电子由施主能级激发到导带的杂质电离过程质电离过程.只有在足够高的温度下只有在足够高的温
36、度下,本征激发才本征激发才成为载流子的主要来源成为载流子的主要来源.若同时考虑本征激发和杂质电离若同时考虑本征激发和杂质电离,电中性条件为:电中性条件为:(单位体积中的)负电荷数正电荷数(单位体积中的)负电荷数正电荷数所以所以理论上从上式中可以解出费米能级,但形式比较复杂,下面分理论上从上式中可以解出费米能级,但形式比较复杂,下面分不同温度范围进行讨论:不同温度范围进行讨论:3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度现在学习的是第45页,共87页 低温弱电离低温弱电离(温度很低时(温度很低时TT数数K K,只有很少量施主,只有很少量施主杂质发生电离,这少量的电子进入导
37、带,这种情况称为杂质发生电离,这少量的电子进入导带,这种情况称为弱电离弱电离)在温度很低的情况下,没有本征激发存在,电中性条在温度很低的情况下,没有本征激发存在,电中性条件简化:件简化:则则低温弱电离区低温弱电离区费米能级费米能级解出解出3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度现在学习的是第46页,共87页由此可以看出:由此可以看出:绝对零度(绝对零度(T0K)时)时,EF位于导带底和施主能级的中央位于导带底和施主能级的中央.在足够低的温度区(几在足够低的温度区(几K时),当时),当2NCND的温度区,的温度区,EF继续下继续下 降降。现在学习的是第47页,共87页
38、把得出的费米能级把得出的费米能级E EF F代入导带电子浓度公式得导带代入导带电子浓度公式得导带电子浓度为电子浓度为其中其中EED D=E EC C-E Ed d是施主电能是施主电能在弱电离范围内,利用实验上测得的在弱电离范围内,利用实验上测得的n n0 0(T)(T),作,作出半对数出半对数 ,由,由直线的斜率可以确定施主电离能直线的斜率可以确定施主电离能EED D,从而得到杂从而得到杂质能级的位置。质能级的位置。低温弱电离区导带低温弱电离区导带电子浓度电子浓度现在学习的是第48页,共87页 (2)(2)中间电离区中间电离区(数数K K数十数十K K)中间电离区的温度仍然较低,致使价带电子不
39、能中间电离区的温度仍然较低,致使价带电子不能激发到导带,所以价带空穴浓度激发到导带,所以价带空穴浓度p=0p=0,此时有相当数,此时有相当数量的施主电离,而且随着温度增加电离施主进一步增量的施主电离,而且随着温度增加电离施主进一步增多,中间电离区的电中性条件仍为多,中间电离区的电中性条件仍为 当温度上升到使当温度上升到使E EF F下降到下降到E EF F=E=ED D,热平衡电子浓度,热平衡电子浓度 ,说明这时有,说明这时有1/31/3杂质电离。杂质电离。3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度现在学习的是第49页,共87页(3 3)强电离区)强电离区(饱和电离,
40、数十(饱和电离,数十K K数百数百K K)温度继续升高,杂质大部分电离,而本征激发尚不温度继续升高,杂质大部分电离,而本征激发尚不明显,本征载流子浓度远小于掺杂浓度,电中性方程中明显,本征载流子浓度远小于掺杂浓度,电中性方程中的的p忽略,有忽略,有则则在一般的掺杂浓度下在一般的掺杂浓度下N NC C N ND D,上式右端的第二项是负的,上式右端的第二项是负的.在一定温度在一定温度T T时,时,N ND D越大,越大,E EF F就越向导带靠近。而就越向导带靠近。而N ND D一定,一定,随着温度的升高随着温度的升高,E EF F与导带底与导带底E EC C的距离增大,向的距离增大,向EiEi
41、靠近。靠近。(参考书中图(参考书中图3-103-10)强电离区导带强电离区导带电子浓度电子浓度强电离区费米能级强电离区费米能级3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度现在学习的是第50页,共87页 强电离区的载流子浓度直接由电中性条件给出,可见强电离区的载流子浓度直接由电中性条件给出,可见n n型半导体的多数载流子浓度与温度无关,导带电子浓度就型半导体的多数载流子浓度与温度无关,导带电子浓度就等于施主浓度这就是说,施主杂质已经全部电离,又通常等于施主浓度这就是说,施主杂质已经全部电离,又通常称这种情况为称这种情况为杂质饱和电离杂质饱和电离这一区间内,半导体的载流子这
42、一区间内,半导体的载流子浓度基本与温度无关,所以强电离区是一般半导体器件的工作浓度基本与温度无关,所以强电离区是一般半导体器件的工作温区。温区。在饱和电离情况下,导带中的电子主要来自施主,从价在饱和电离情况下,导带中的电子主要来自施主,从价带激发到导带的电子可以忽略,但其留下了空穴,利用带激发到导带的电子可以忽略,但其留下了空穴,利用npnp=n ni i2 2,可以求出空穴浓度可以求出空穴浓度现在学习的是第51页,共87页 的型硅的型硅()中中,室温下施主基本上全部电离,室温下施主基本上全部电离,例:在施主浓度为例:在施主浓度为对于型半导体,导中的电子被称为多数载流子(多子),对于型半导体,
43、导中的电子被称为多数载流子(多子),价带中的空穴被称为少数载流子(少子)对于型半导体则价带中的空穴被称为少数载流子(少子)对于型半导体则相反少子的数量虽然很少,但它们在器件工作中却起着极其相反少子的数量虽然很少,但它们在器件工作中却起着极其重要的作用重要的作用 半导体材料是否处于饱和电离区,除了与材料所处的温半导体材料是否处于饱和电离区,除了与材料所处的温度有关外,还与杂质浓度有很大关系。度有关外,还与杂质浓度有很大关系。一般来说,杂质浓一般来说,杂质浓度越高,达到全部电离的温度就越高。要使材料处于饱度越高,达到全部电离的温度就越高。要使材料处于饱和电离,杂质浓度应有上下限。(注意相关计算)和
44、电离,杂质浓度应有上下限。(注意相关计算)则则现在学习的是第52页,共87页关于饱和电离区的杂质浓度范围的计算:关于饱和电离区的杂质浓度范围的计算:(a a)杂质基本上全部电离的条件)杂质基本上全部电离的条件 施主杂质基本上全部电离施主杂质基本上全部电离,意味着未电离施主浓度远小意味着未电离施主浓度远小于施主浓度于施主浓度,即即n nD DN ND D和和p p0 0N ND D。这时,电中性条件这时,电中性条件变成变成n n0 0 =p p0 0=n=ni i,这种情况与未掺杂的本征半导体类似这种情况与未掺杂的本征半导体类似,称,称为杂质半导体进入高温本征激发区。杂质浓度越高,进入本征为杂质
45、半导体进入高温本征激发区。杂质浓度越高,进入本征激发区温度越高。激发区温度越高。综上:综上:杂质半导体中载流杂质半导体中载流子浓度随温度变化的规律,子浓度随温度变化的规律,从低温到高温大致可分为从低温到高温大致可分为四个区域,即杂质弱电离四个区域,即杂质弱电离区,杂质饱和区、过渡区区,杂质饱和区、过渡区和本征激发区和本征激发区lnn本征区本征区饱和区饱和区杂质电离区杂质电离区3.4.2 n3.4.2 n型半导体的载流子浓度型半导体的载流子浓度过渡区过渡区现在学习的是第58页,共87页3.4.3 P3.4.3 P型半导体载流子浓度型半导体载流子浓度(1 1)杂质弱电离)杂质弱电离 (2 2)强电
46、离(饱和区)强电离(饱和区)未电离的百分比未电离的百分比现在学习的是第59页,共87页 过渡区过渡区本征激发区本征激发区 现在学习的是第60页,共87页3.4.4 3.4.4 费米能级与杂质浓度和温度的关系费米能级与杂质浓度和温度的关系ET 0杂质浓度一定时,费米能级随温度的变化关系杂质浓度一定时,费米能级随温度的变化关系对于杂质浓度一定的半导体,对于杂质浓度一定的半导体,随着温度的升高,载流子则随着温度的升高,载流子则是从杂质电离为主要来源过是从杂质电离为主要来源过渡到以本征激发为主要来源渡到以本征激发为主要来源的过程,相应地费米能级从的过程,相应地费米能级从杂质能级附近逐渐移近禁带杂质能级
47、附近逐渐移近禁带中线处。中线处。现在学习的是第61页,共87页 根据在本节中得到的费米能级的公式以及它们与根据在本节中得到的费米能级的公式以及它们与温度的关系的讨论温度的关系的讨论,可以得出在整个温度范围内费米能可以得出在整个温度范围内费米能级随温度的变化规律级随温度的变化规律.对于对于N N型和型和P P型半导体型半导体,图中给出图中给出杂质浓度一定时杂质浓度一定时E EF F随温度变化的示意图随温度变化的示意图.对于对于N N型半导体型半导体,当杂质浓度一定时,随着温度的当杂质浓度一定时,随着温度的升高,费米能级从施主能级以上移动到施主能级以升高,费米能级从施主能级以上移动到施主能级以下,
48、最终下降到禁带中线处;对于下,最终下降到禁带中线处;对于P P型半导体型半导体,当杂质当杂质浓度一定时,随着温度的升高,费米能级从受主能浓度一定时,随着温度的升高,费米能级从受主能级以下逐渐上升到禁带中线处。级以下逐渐上升到禁带中线处。现在学习的是第62页,共87页当温度一定时,费米能级随杂质浓度的变化关系当温度一定时,费米能级随杂质浓度的变化关系 当温度一定时,费米能级的位置由杂质浓度所决定,当温度一定时,费米能级的位置由杂质浓度所决定,如下图所示。如下图所示。3.4.4 3.4.4 费米能级与杂质浓度和温度的关系费米能级与杂质浓度和温度的关系现在学习的是第63页,共87页对于对于N N型半
49、导体型半导体,费米能级位于禁带中线以上,在同一费米能级位于禁带中线以上,在同一温度下温度下,施主浓度越大,费米能级的位置越高施主浓度越大,费米能级的位置越高,由禁带由禁带中线逐渐向导带底靠近。中线逐渐向导带底靠近。对于对于P P型半导体型半导体,费米能级位于禁带中线以下,在同一温费米能级位于禁带中线以下,在同一温度下,受主浓度越大度下,受主浓度越大,费米能级的位置越低费米能级的位置越低,由禁带中线逐由禁带中线逐渐向价带顶靠近。渐向价带顶靠近。由上可知,当温度一定时,费米能级随杂质浓度的变化的由上可知,当温度一定时,费米能级随杂质浓度的变化的规律如下:规律如下:现在学习的是第64页,共87页小结
50、:求解含一种杂质的热平衡半导体载流小结:求解含一种杂质的热平衡半导体载流子浓度的思路:子浓度的思路:对只含一种杂质的半导体:对只含一种杂质的半导体:首先判断半导体所处的温度区域(四个)首先判断半导体所处的温度区域(四个)杂质弱电离区、饱和电离区、过渡区、本征激发区杂质弱电离区、饱和电离区、过渡区、本征激发区 如何判断?如何判断?写出电中性条件;写出电中性条件;利用该温度区域的载流子浓度计算公式求解。利用该温度区域的载流子浓度计算公式求解。现在学习的是第65页,共87页例题解析二例题解析二掺入某种浅受主杂质的掺入某种浅受主杂质的P P型型SiSi,若,若nini、NANA、NvNv、T T作为已