《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节测评练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节测评练习题(精选含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC和ABC关于直线l对称,连接BC,BC,CC,下列结论:l垂直平分CC;BACBAC;BCCBCC;
2、直线BC和BC的交点一定在l上,其中正确的有( )A4个B3个C2个D1个2、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个3、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)4、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD5、如图,E是正方形ABCD中CD边上的点,以点A为中心,把ADE顺时针旋转,得
3、到ABF下列角中,是旋转角的是( )ADAEBEABCDABDDAF6、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD7、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)8、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D609、已知A(3,2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则xy的值
4、是( )A1B0C1D210、已知半圆O的直径AB8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m()Am4Bm4C4m4D4m4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_2、如图,直线MN过正方形ABCD的顶点A,且NAD30,AB2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60至BQ,连CQ,CQ的最小值是 _3、若点M(,a)关于y轴的对称点是点N(b,),则
5、=_4、点A关于轴的对称点坐标是,则点关于轴的对称点坐标是_.5、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2)(1)在图中画出ABC关于y轴对称的A1B1C1;(2)通过平移,使B1移动到原点O的位置,画出平移后的A2B
6、2C2(3)在ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_2、如图1,O是直线AB上的一点,COD是直角,OE平分BOC(1)若AOC30时,则DOE的度数为 (直接填空);(2)将图1中的COD绕顶点O顺时针旋转至图2的位置,其它条件不变,探究AOC和DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图1中的COD绕顶点O顺时针旋转至图3的位置,其他条件不变,请你直接写出AOC和DOE的度数之间的关系: 3、在平面直角坐标系xOy中,点P为一定点,点P和图形W的“旋转中点”定义如下:点Q是图形W上任意一点,将点Q绕原点顺时针旋转90,得到点,点M为线段的
7、中点,则称点M为点P关于图形W的“旋转中点”(1)如图1,已知点,在点,中,点 是点A关于线段BC的“旋转中点”;求点A关于线段BC的“旋转中点”的横坐标m的取值范围;(2)已知,点,且D的半径为2若的内部(不包括边界)存在点G关于D的“旋转中点”,求出t的取值范围4、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C25、一副三角尺(分别含30,60,90和45,45,90)按如图所示摆放,边OB,OC
8、在直线l上,将三角尺ABO绕点O以每秒10的速度顺时针旋转,当边OA落在直线l上时停止运动,设三角尺ABO的运动时间为t秒(1)如图,AOD ;(2)当t5时,BOD ;(3)当t 时,边OD平分AOC;(4)若在三角尺ABO开始旋转的同时,三角尺DCO也绕点O以每秒4的速度逆时针旋转,当三角尺ABO停止旋转时,三角尺DCO也停止旋转在旋转过程中,是否存在某一时刻使AOC2BOD,若存在,请直接写出的值;若不存在,请说明理由-参考答案-一、单选题1、A【分析】根据成轴对称的两个图形能够完全重合可得ABC和ABC全等,然后对各小题分析判断后解可得到答案【详解】解:ABC和ABC关于直线L对称,l
9、垂直平分CC;BACBAC;BCCBCC;直线BC和BC的交点一定在l上,综上所述,正确的结论有4个,故选:A【点睛】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合判断出两个三角形全等是解题的关键2、C【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似
10、图形的性质,熟练掌握位似图形的性质是解决问题的关键3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键4、D【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键5、C【分析】根据“旋转角是指以图形在作旋转运动
11、时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解【详解】解:由题意得:旋转角为DAB或EAF,故选C【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键6、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律7、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐
12、标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律8、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质9、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y【详解】A(3,2),B(1,0)平移后的对应点C(5,x),D(y,0),平移方法为向右平移2个单位,x2,y3,x+y1,故选:C【点
13、睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加10、D【分析】根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,根据折叠的性质可得,又则四边形是菱形,且设,则则当取得最大值时,取得最小值,即取得最小值,当取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形则此时当点与点重合时,此时最小,则即则故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关
14、键二、填空题1、【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作图和“心”形的对称性得到COB=30,BOG=60,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P点C绕原点O旋转60得到点D,COD=60,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30,BOG=60,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标为,点A坐标为,AP=,BP=9,在RtABP中,故答
15、案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键2、#【分析】如图,连接交于 则 先证明 把绕顺时针旋转得到 证明 可得三点共线,在上运动,过作于 则重合时,最短,再求解 从而可得答案.【详解】解:如图,连接PQ交于 则 是等边三角形, 正方形 把绕顺时针旋转得到 则 三点共线, 在上运动,过作于 则重合时,最短, 是等边三角形,记交于 所以CQ的最小值是,故答案为:【点睛】本题考查的是正方形的性质,相似三角形的性质,锐角三角函数的应用,得到的运动轨迹是解本题的关键.3、1【分析】直接利用关于y轴对称点的性质(横坐标互
16、为相反数,纵坐标不变)得出a,b的值,进而求出答案【详解】解:点M(,a)关于y轴的对称点是点N(b,),b=-,a=,则=1故答案为:1【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键4、(2,1)【分析】根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标【详解】解:点A关于轴的对称点坐标是,点坐标是点关于轴的对称点坐标是故答案为:【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数5、2【分析】根据余弦的定义求出OB,根据
17、题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30,OA1,OBOAcosAOB,由题意得,OB12OB2,OB22OB122,OBn2n2n1,的长为:22020=22020,故答案为:22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;(2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;(3)根据两次变换可知,点P先关于y轴对
18、称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标【详解】(1)如图所示,即为所作;(2)如图所示,即为所作;(3)点关于y轴对称得,向右平移3个单位,再向下平移4个单位得故答案为:【点睛】本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键2、(1)15;(2),理由见解析;(3),理由见解析【分析】(1)由已知可求出,再由是直角,平分求出的度数;(2)由是直角,平分可得出,则得,从而得出和的度数之间的关系;(3)根据(2)的解题思路,即可解答【详解】解:(1)由已知得,又是直角,平分,故答案为:15;(2);理由:是直角,
19、平分,则得,所以得:;(3);理由:平分,则得,所以得:【点睛】本题考查的知识点是角平分线的性质、旋转性质及角的计算,解题的关键是正确运用好有关性质准确计算角的和差倍分3、(1)点为点A关于线段的“旋转中点”;(2)t的取值范围或【分析】(1)分别假设点为点A关于线段的“旋转中点”,求出点(旋转之前的点),查看点是否在线段即可;设点A关于线段的“旋转中点”的坐标为,按照题意,逆向思维找到点,根据点在线段上,求解即可;(2)设旋转中点的坐标为,则应满足,找到点,线段的中点为,再将点逆时针旋转,得到点,点应该在使得点在的内部(不包括边界),求解即可【详解】解:(1)假设点为点A关于线段的“旋转中点
20、”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点在线段上,符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;综上所得,点为点A关于线段的“旋转中点”,设点A关于线段的“旋转中点”的坐标为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在线段上,即,解得;(2)设的内部(不包括边界
21、)存在点G关于D的“旋转中点”,为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在D上, 即,解得,02n+t2或-22n+t0,或,设EF解析式为把坐标代入得,解得,EF解析式为,由题意可得:点在的内部(不包括边界),0n2,又,解得, ,t的取值范围或【点睛】此题考查了坐标系点坐标的旋转变换,涉及了不等式组的求解,新概念的理解,解题的关键是理解点P和图形W“旋转中点”的概念,并掌握点绕原点顺时针或逆时针旋转后的坐标公式绕原点旋转的坐标公式:点绕原点顺时针转后坐标为,逆时针转旋转坐标为4、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移
22、的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键5、(1)105,6300;(2)85;(3)6;(4)当或时,【分析】(1)由及三角板的特点,即可求出的大小,再由度和分的进率计算,即可填空;(2)当时,画出图形,结合题意可知,即由可求出的大小;(3)结合题意,画出图形,由此可知,从而可求出旋转角,即可求出t的值;(4)由题意可求出当OA和OC重合时,可求出t的值为,即可
23、分别用t表示出和时的大小当OB和OD重合时,可求出t的值为,即可分别用t表示出和时的大小最后根据进行分类讨论当时、 当时和当时,求出t的值,再舍去不合题意的值即可【详解】(1),故答案为:105,6300;(2)当时,即三角尺ABO绕点O顺时针旋转了,如图,即为旋转后的图形由旋转可知,故答案为85;(3)当三角尺绕点O顺时针旋转到如图所示的的位置时,边OD平分AOC ,;故答案为:6;(4)当边OA落在直线l上时停止运动时,当OA和OC重合时,即有,解得:当时,当时,当OB和OD重合时,即有,解得:当时,当时,可根据分类讨论,当时,有,解得:,符合题意;当时,即有解得:,符合题意;当时,即有解得:,不符合题意舍;综上,可知当或时,【点睛】本题考查三角板中的角度计算,旋转中的角度计算,较难利用数形结合和分类讨论的思想是解答本题的关键