2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节训练试题(含解析).docx

上传人:知****量 文档编号:28163457 上传时间:2022-07-26 格式:DOCX 页数:31 大小:1,003.02KB
返回 下载 相关 举报
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节训练试题(含解析).docx_第1页
第1页 / 共31页
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节训练试题(含解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换章节训练试题(含解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为(

2、 )A4B6C8D102、如图,在中,垂足为D,与关于直线对称,点B的对称点是点E,则的度数为( )ABCD3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)4、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D65、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD6、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度

3、,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度7、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD8、如图,在ABC中,BAC108,将ABC绕点A按逆时针方向旋转得到,若点刚好落在BC边上,且,则C的度数为()A22B24C26D289、如图,把含30的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D610、如图,与位似,点为位似中心已知,则与的面积比为( )ABCD第卷(非选择题 70

4、分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _2、如图,在平面直角坐标系中,、两点的坐标分别为、,点是线段的中点,将线段绕点顺时针旋转得到,过、三点作抛物线当时,抛物线上最高点的纵坐标为_3、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_4、是反比例函数在第一象限内的图像,且过点,与关于轴对称,那么图像的函数解析式为_5、如图 ,

5、在 Rt 中, 是边 的中点, 点 在边 上, 将 沿直线 翻折, 使得点 落在同一平面内的点 处. 如果线段 交边 于点 , 当 时, 的值为_三、解答题(5小题,每小题10分,共计50分)1、点P为等边的边AB延长线上的动点,点B关于直线PC的对称点为D,连接AD(1)如图1,若,依题意补全图形,并直接写出线段AD的长度;(2)如图2,线段AD交PC于点E,设,求的度数;求证:2、在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90得到EF,连接BF(1)如图1,点E在BC边上依题意补全图1;若AB6,EC2,求BF的长;(2)如图2,点E在

6、BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系3、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标4、如图,三个顶点的坐标分别是(1)请画出关于x轴对称的图形;(2)求的

7、面积;(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标5、如图,在中,点,分别在边,上,且,此时,成立(1)将绕点逆时针旋转时,在图中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图证明,若不成立请说明理由;(3)将绕点逆时针旋转一周的过程中,当,三点在同一条直线上时,请直接写出的长度-参考答案-一、单选题1、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入

8、直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键2、A【分析】求出C,AED,利用三角形的外角的性质求解即可【详解】解:B=50,ABC=90,C=90-50=40,ADBC,ADB与ADE关于直线AD对称,AED=B=50,AED=C+CAE,CAE=50-40=10,故选:A【点睛】本题考查轴对称,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:

9、ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小4、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是

10、等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键5、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键6、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平

11、面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度7、B【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形

12、叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键8、B【分析】根据图形的旋转性质,得ABAB,已知ABCB,结合等腰三角形的性质及三角形的外角性质,得B、C的关系即可解决问题【详解】解:ABCB,CCAB,ABBC+CAB2C,将ABC绕点A按逆时针方向旋转得到ABC,CC,ABAB,BABB2C,B+C+CAB180,3C180108,C24,故选:B【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得B、C的关系为解决问题的关键9、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三

13、角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含30的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键10、D【分析】根据相似比等于位似比,面积比等于相似比的平方即可求解【详解】解:与位似,点为位似中心已知,与的相似比为与的面积比为故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似

14、比是解题的关键二、填空题1、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键2、【分析】根据题意求得顶点坐标,然后利用待定系数法即可求得抛物线的解析式,根据图象上点的坐标特征即可求得抛物线上最高点的纵坐标【详解】解:、两点的坐标分别为、,点是线段的中点,轴,将线段绕

15、点顺时针旋转得到,轴,顶点为,设抛物线的解析式为,代入得,抛物线开口向下,当时,在时,函数有最大值为:,当时,抛物线上最高点的纵坐标为故答案为:【点睛】本题考查的是二次函数的最值,待定系数法求二次函数的解析式,二次函数的性质,坐标与图形变化-旋转,根据题意得到顶点坐标是解题的关键3、【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作图和“心”形的对称性得到COB=30,BOG=60,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、

16、BP相交于点P点C绕原点O旋转60得到点D,COD=60,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30,BOG=60,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标为,点A坐标为,AP=,BP=9,在RtABP中,故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键4、【分析】把A(2,5)代入求出k值,即得到反比例函数的解析式进一步根据与关于轴对称的性质得到的函数解析式【详解】解:把A(2,5)代入,得k=10,反比例函数的解析式是,与关于轴对称,l2的解析式应为故答

17、案为【点睛】本题考查反比例函数及轴对称的知识,用待定系数法求反比例函数的解析式难度不大5、1:4【分析】过点E作EHAC与H,EIBC与I,设AC=3m,根据三角函数可求AB=,根据勾股定理,根据点D是边 的中点,得出CD=BD=2m,DG=BDsinB=,根据 沿直线 翻折,得到FDE,得出EDC=EDF,可证EIDEGD(AAS),得出ID=GD=,再证四边形HCIE为矩形HE=CI=,HECI即HECB,证明AEHABC,即可【详解】解:过点E作EHAC与H,EIBC与I,设AC=3m,AB=,根据勾股定理,点D是边 的中点,CD=BD=2m,DG=BDsinB=, 沿直线 翻折,得到F

18、DE,EDC=EDF,EIBC,EID=90=EGD,在EID和EGD中,EIDEGD(AAS),ID=GD=,CI=CD-ID=2m-,EHAC,EHC=90,HCI=ACB=90,EIC=90,EHC=HCI=EIC=90,四边形HCIE为矩形,HE=CI=,HECI即HECB,AHE=ACB,AEH=B,AEHABC,即,解得,BE=AB-AE=5m-m=4m,三、解答题1、(1)(2);证明见解析【分析】(1)连接DP,BD,可证明BPD为等边三角形,再结合等腰三角形的性质和三角形外角的性质证明BAD=BDA=30,可得ADP=90,利用勾股定理即可得出结论;(2)连接BD与CP交于F

19、,连接DC,利用等腰三角形的性质和三角形内角和定理求得和,从而可求得,根据轴对称图形对应点连接线段被对称轴垂直平分、三角形内角和定理、对顶角相等可求得的度数;连接BE,在AE上截取GE=CE,可证明GCE为等边三角形和ACGBCE,结合等量代换即可证明结论【详解】解:(1)补全图形如下,连接DP,BD,ABC为等边三角形,ABC=60,AB=BC=2,又BCP+BPC=ABC=60,BC=BP,BCP=BPC=30,点B关于直线PC的对称点为D,BP=DP,BPC=DPC=30,BPD=60,BPD为等边三角形,DBP=60,DP=BD=BP=AB=2,BAD=BDA,又BAD+BDA=DBP

20、=60,BAD=BDA=30,ADP=90,(2)如下图所示,连接BD与CP交于F,连接DC,由(1)可知ACB=60,AC=BC,点B关于直线PC的对称点为D,BC=CD=AC,CFD=90,,,如下图,连接BE,在AE上截取GE=CE,由得,GE=CE,GCE为等边三角形,GC=CE,GCE=60,由(1)得ACB=60,AC=BC,ACG=BCE=60-BCG,在ACG和BCE中,ACGBCE(SAS)AG=BE,点B关于直线PC的对称点为D,BE=DE,【点睛】本题考查轴对称的性质,全等三角形的性质和判定,等边三角形的性质和判定,三角形外角和内角的性质,等腰三角形的性质,勾股定理等(1

21、)中能正确构造直角三角形并证明是解题关键;(2)中掌握等边对等角定理,并能利用三角形内角和定理表示等腰三角形的底角是解题关键;中掌握割补法是解题关键2、(1)见解析;(2)【分析】(1)根据题意作图即可;过点F作FHCB,交CB的延长线于H,证明DECEFH得到ECFH2,CDBCEH6,则HBEC2,在RtFHB中,利用勾股定理即可求解;(2)过点F作FHCB,交CB于H,先证明DECEFH得到ECFH,CDBCEH,则HBECHF,DCB和BHF都是等腰直角三角形,由此利用勾股定理求解即可【详解】解(1)如图所示,即为所求;如图所示,过点F作FHCB,交CB的延长线于H,四边形ABCD是正

22、方形,CDAB6,C90,DEFC90,DEC+FEH90,DEC+EDC90,FEHEDC,在DEC和EFH中,DECEFH(AAS),ECFH2,CDBCEH6,HBEC2,RtFHB中,BF(2)结论:BF+BDBE理由:过点F作FHCB,交CB于H,四边形ABCD是正方形,CDAB,DCE90,DEFDCE90,DEC+FEH90,DEC+EDC90,FEHEDC,在DEC和EFH中,DECEFH(AAS),ECFH,CDBCEH,HBECHF,DCB和BHF都是等腰直角三角形,HE+BHBE,BF+BDBE【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,解题的关

23、键在于能够正确作出辅助线,构造全等三角形3、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,PQM即为所求;P是D(-3,0)横坐标减2,纵坐标加3得到的,点P的坐标为(-5,3)【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点4、(1)见解析

24、;(2)3.5;(3)图形见解析,P点的坐标为【分析】(1)找到关于轴对称的点,顺次连接,则即为所求;(2)根据网格的特点,根据即可求得的面积;(3)连接,与轴交于点,根据对称性即可求得,点即为所求【详解】解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图(2)(3)根据作图可知,P点的坐标为【点睛】本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键5、(1)补充图形见解析;(2),仍然成立,证明见解析;(3)或【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,1=2,再根据1+3+4=90

25、得23+4=90,从而可得出结论;(3)分两种情况,运用勾股定理求解即可【详解】解:(1)如图所示,根据题意得,点D在BC上,是直角三角形,且BC=,CE= 由勾股定理得,;(2),仍然成立.证明:延长交于点,又,在中,.(3)当点D在AC上方时,如图1所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, 当点D在AC下方时,如图2所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, .所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁