《2022年强化训练京改版九年级数学下册第二十三章-图形的变换章节测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换章节测评试题(含详细解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是( )ABCD2、如图,若绕点A按逆时针方向旋转40后与重合,则( ) A40B5
2、0C70D1003、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D604、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)5、下列图形既是轴对称图形又是中心对称图形的是()ABCD6、点P( 5,3 )关于y轴的对称点是 ( )A(5, 3
3、 )B(5,3)C(5,3 )D(5,3 )7、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD38、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是()A(-1,-2)B(-2,1)C(2,1)D(2,-1)9、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD10、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,、两点的坐标分别为、,点是线段的中点,将线段绕点顺时针旋转得到,
4、过、三点作抛物线当时,抛物线上最高点的纵坐标为_2、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_3、在平面直角坐标系中,以原点为位似中心,作的位似图形,使它与相似比为2,若点的坐标为,则位似图形上与点对应的点的坐标为_4、小聪在研究题目“如图,在等腰三角形ABC中,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:;图中没有60的角;D、O、C三点共线请你直接写出其中正确的结论序号:_5、如图,已知,在
5、中,将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F(I)求证:;(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值三、解答题(5小题,每小题10分,共计50分)1、在如图所示的平面直角系中,已知,(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 2、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上(点M,N是格点)(1)画出线段AB绕点N顺时针旋转90得到的线段(点,分别为A,B的对应点);(2)
6、在问题(1)的旋转过程中,求线段AB扫过的面积3、如图1,在ABC中,ABAC2,BAC120,点D、E分别是AC、BC的中点,连接DE(1)探索发现:图1中,的值为 ,的值为 (2)拓展探究若将CDE绕点C旋转,在旋转过程中的大小有无变化?请仅就图2的情形给出证明(3)问题解决当CDE旋转至A,D,C三点共线时,直接写出线段BE的长4、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为( , );(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并直接写出( , ),( , ),( , );(3)仅用
7、无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法)5、如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,四边形ABCD的顶点均落在格点上(1)在图中画出四边形ABCD关于x轴对称的四边形A1B1C1D1;(2)在(1)的条件下,分别写出点A、D的对应点A1、D1的坐标-参考答案-一、单选题1、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合
8、题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键2、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键3、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等
9、知识,解题的关键是理解题意,掌握正六边形的性质4、D【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键5、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图
10、形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形6、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标【详解】解:所求点与点P(5,3)关于y轴对称,所求点的横坐标为5,纵坐标为3,点P(5,3)关于y轴的对称点是(5,3)故选B【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数
11、,纵坐标相同7、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键8、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是故选B【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相
12、反数,横轴坐标不变进行分析9、C【详解】解:选项A中的图形是轴对称图形,不是中心对称图形,故A不符合题意;选项B中的图形既不是轴对称图形,也不是中心对称图形,故B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,轴对称图形的定义:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形的定义:把一个图形绕某点旋转后能够与自身完全重合;掌握定义是解本题的关键.10、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【
13、详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键二、填空题1、【分析】根据题意求得顶点坐标,然后利用待定系数法即可求得抛物线的解析式,根据图象上点的坐标特征即可求得抛物线上最高点的纵坐标【详解】解:、两点的坐标分别为、,点是线段的中点,轴,将线段绕点顺时针旋转得到,轴,顶点为,设抛物线的解析式为,代入得,抛物线开口向下,当时,在时,函数有最大值为:,当时,抛物线上最高点的纵坐标为故答案为:【点睛】本题考查的是二次函数的最值,待定系数法求二次函数的解析式,二次
14、函数的性质,坐标与图形变化-旋转,根据题意得到顶点坐标是解题的关键2、【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作图和“心”形的对称性得到COB=30,BOG=60,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P点C绕原点O旋转60得到点D,COD=60,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30,BOG=60,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标
15、为,点A坐标为,AP=,BP=9,在RtABP中,故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键3、(8,4)或(-8,-4)-8,-4)或(8,4)【分析】作出图形,连接OA,分类讨论,并根据位似图形的相似比为2,且位似中心为原点,即可直接求出结果【详解】如图,连接OA,根据题意可分类讨论:设的位似三角形为,此时点在OA的延长线上,如图,它们的相似比为2,此时位似图形上与点A对应的点的坐标为(8,4)设的位似三角形为,此时点在OA的反向延长线上,如图,它们的相似比为2, ,此时位似图形上与点A对应的点的坐标为(
16、-8,-4)故答案为:(8,4)或(-8,-4)【点睛】本题考查求位似图形的对应坐标,利用分类讨论和数形结合的思想是解答本题的关键4、【分析】根据题意先求出BAO=25,进而求出OBC=40,求出COE=OCB=40,最后根据等腰三角形的性质即可得出,进而再判断即可【详解】解:BAC=50,AO为BAC的平分线,BAO=BAC=50=25又AB=AC,ABC=ACB=65DO是AB的垂直平分线,OA=OB,ABO=BAO=25,OBC=ABC-ABO=65-25=40AO为BAC的平分线,AB=AC,直线AO垂直平分BC,OB=OC,OCB=OBC=40,将C沿EF(E在BC上,F在AC上)折
17、叠,点C与点O恰好重合,OE=CECOE=OCB=40;在OCE中,OEC=180-COE-OCB=180-40-40=100,OEF=CEO=50,正确;OCB=OBC=COE=40,BOE=180-OBC-COE-OCB =180-40-40-40=60, 错误;ABO=BAO=25,DO是AB的垂直平分线,DOB=90-ABO=75,OCB=OBC=40,BOC=180-OBC -OCB=180-40-40=100,DOC=DOB+BOC=75+100=175,即D、O、C三点不共线,错误.故答案为:【点睛】本题考查等腰三角形的性质和三角形内角和180以及翻折变换及其应用,解题的关键是根
18、据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断5、(1)见解析;(2)120;(3)【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得ABD=90,BAE=+30,根据菱形的邻角互补求解即可;(3)连接AF,根据菱形的性质和全等三角形的性质可求得FAC=45,FCA=30,过F作FGAC于G,设FG=x,根据等腰直角三角形的性质和含30角的直角三角形的性质求解即可【详解】解:(1)由旋转得:AB=AD,AC=AE,BAD=CAE=,AB=AC,AB=AC=AD=AE,在ABD和ACE中,ABDACE(SAS);(2)AB=AD,BAD=
19、,BAC=30,ABD=(180BAD)2=(180)2=90,BAE=+30,四边形ABFE是菱形,BAE+ABD=180,即+30+90=180,解得:=120;(3)连接AF,四边形ABFE是菱形,BAE=+30=150,BAF=BAE=75,又BAC=30,FAC=7530=45,ABDACE,FCA=ABD=90=30,过F作FGAC于G,设FG=x,在RtAGF中,FAG=45,AGF=90,AFG=FAG=45,AGF是等腰直角三角形,AG=FG=x,在在RtAGF中,FCG=30,FGC=90,CF=2FG=2x,AC=AB=2,又AG+CG=AC,解得:,CF=2x= 【点睛
20、】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键三、解答题1、(1)见解析;(2)(6,6)【分析】(1)在坐标系中先描点,然后依次连接即可得;(2)根据题意中位似中心及相似比先确定点的坐标,然后依次连接即可得【详解】解:(1)在坐标系中先描点,然后依次连接,如图所示:即为所求;(2),根据位似中心及相似比可得:,然后依次连接即可得,即为所求;故答案为:【点睛】题目主要考查位似图形作法及确定点的坐标,熟练掌握位似图形的作法是解题关键2、(1)见解析;(
21、2)【分析】(1)根据旋转的性质:点B和点,点A和点到点N的距离相等,且即可;(2)线段AB扫过的面积为,由扇形面积公式计算即可【详解】(1)如图所示:(2)如图,线段AB扫过的面积=【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键3、(1),;(2)无变化,理由见解析;(3)或【分析】(1)连接,先根据等腰三角形的性质可得,再根据直角三角形的性质、勾股定理可得,然后根据线段中点的定义即可得;(2)先求出,从而可得,再根据旋转的性质可得,从而可得,然后根据相似三角形的判定证出,最后根据相似三角形的性质即可得出结论;(3)分绕点逆时针旋转,绕点逆时针旋转两种情况
22、,分别根据线段的和差即可得【详解】解:(1)如图,连接,点分别是的中点,故答案为:,;(2)无变化,理由如下:由(1)知,由旋转的性质得:,即,在和中,即的大小不变;(3)由题意,分以下两种情况:如图,当绕点逆时针旋转时,三点共线,由(1)知,则;如图,当绕点逆时针旋转时,三点共线,由(1)知,综上,线段的长为或【点睛】本题考查了等腰三角形的性质、含角的直角三角形的性质、旋转的性质、相似三角形的判定与性质等知识点,较难的是题(2),正确找出两个相似三角形是解题关键4、(1)图见解析,;(2)图见解析,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到、的坐标,然后描点即可;(2)根
23、据网格特点和对称的性质,分别作出A、B、C关于直线l的对称点、,然后写出它们的坐标;(3)把AB绕A点逆时针旋转90得到AE,连接BE交AC于D【详解】解:(1)如图,为所作,;(2)如图,为所作,;(3)如图,BD为所作 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标5、(1)见解析;(2)A1(3,5)、D1(3,4)【分析】(1)分别作出四个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,四边形A1B1C1D1即为所求(2)A1(3,5)、D1(3,4)【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义与性质