第八章应力状态分析与强度理论PPT讲稿.ppt

上传人:石*** 文档编号:44703702 上传时间:2022-09-22 格式:PPT 页数:100 大小:7.95MB
返回 下载 相关 举报
第八章应力状态分析与强度理论PPT讲稿.ppt_第1页
第1页 / 共100页
第八章应力状态分析与强度理论PPT讲稿.ppt_第2页
第2页 / 共100页
点击查看更多>>
资源描述

《第八章应力状态分析与强度理论PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第八章应力状态分析与强度理论PPT讲稿.ppt(100页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第1页,共100页,编辑于2022年,星期三1 问题的提出问题的提出l 低碳钢和铸铁的拉伸实验低碳钢和铸铁的拉伸实验u 低碳钢的拉伸实验低碳钢的拉伸实验u 铸铁的拉伸实验铸铁的拉伸实验 问题问题:为什么低碳钢拉伸时会出现:为什么低碳钢拉伸时会出现 45 45 滑移线?滑移线?8-1 应力状态的概念应力状态的概念第2页,共100页,编辑于2022年,星期三l 低碳钢和铸铁的扭转实验低碳钢和铸铁的扭转实验 u 低碳钢的扭转实验低碳钢的扭转实验 u 铸铁的扭转实验铸铁的扭转实验 问题问题:为什么铸铁扭转时会沿:为什么铸铁扭转时会沿 45 45 螺旋面断开螺旋面断开?所以,不仅要研究所以,不仅要研究横

2、截面横截面上的应力,而且也要研究上的应力,而且也要研究斜截面斜截面上的应力。上的应力。第3页,共100页,编辑于2022年,星期三横截面上的正应力分布横截面上的正应力分布横截面上的正应力分布横截面上的正应力分布F F FN NN 横截面上正应力分析和剪应力分析的结果表明:同横截面上正应力分析和剪应力分析的结果表明:同横截面上正应力分析和剪应力分析的结果表明:同横截面上正应力分析和剪应力分析的结果表明:同一面上不同点的应力各不相同,此即一面上不同点的应力各不相同,此即一面上不同点的应力各不相同,此即一面上不同点的应力各不相同,此即应力的点的概念。应力的点的概念。应力的点的概念。应力的点的概念。F

3、 F FS SS横截面上的剪应力分布横截面上的剪应力分布横截面上的剪应力分布横截面上的剪应力分布2 应力的三个重要概念应力的三个重要概念l 应力的应力的点点的概念的概念 第4页,共100页,编辑于2022年,星期三l 应力的应力的面面的概念的概念 过同一点的过同一点的不同方向不同方向的截的截面面上的应力各不相同,上的应力各不相同,此即此即应力的应力的面面的概念的概念。所以,讲到应力,应指明是所以,讲到应力,应指明是哪一哪一点点在在哪一方向哪一方向面面上的应力上的应力。l 应力状态的概念应力状态的概念 过一点的过一点的不同方向面不同方向面上的应力的上的应力的集合集合,称为这,称为这一点的一点的应

4、力状态应力状态。第5页,共100页,编辑于2022年,星期三应 力指明哪一个面上?哪一点?哪一点?哪个方向面?过一点、在不同方向面上应力的集合,称之为这过一点、在不同方向面上应力的集合,称之为这过一点、在不同方向面上应力的集合,称之为这过一点、在不同方向面上应力的集合,称之为这一点的一点的一点的一点的应力状态。应力状态。应力状态。应力状态。第6页,共100页,编辑于2022年,星期三3 一点应力状态的描述一点应力状态的描述l 单元体单元体u 单元体的边长单元体的边长 dx,dy,dz 均为无穷小量;均为无穷小量;l 单元体的单元体的特点特点第7页,共100页,编辑于2022年,星期三u 单元体

5、的边长单元体的边长 dx,dy,dz 均为无穷小量;均为无穷小量;l 单元体的单元体的特点特点u 单元体的每一个面上,应力均匀分布;单元体的每一个面上,应力均匀分布;u 单元体中相互平行的两个面上,应力相同。单元体中相互平行的两个面上,应力相同。4 主应力及应力状态的分类主应力及应力状态的分类l 主应力和主平面主应力和主平面 切应力全为零时的正应力称为切应力全为零时的正应力称为主应力主应力;第8页,共100页,编辑于2022年,星期三4 4 主应力及应力状态的分类主应力及应力状态的分类l 主应力和主主应力和主 平面平面切应力全为零时的正应力称为切应力全为零时的正应力称为主应力主应力;主应力所在

6、的平面称为主应力所在的平面称为主平面主平面;主平面的外法线方向称为主平面的外法线方向称为主方向主方向。主应力用主应力用1,2,3 表示表示 (1 2 3)。第9页,共100页,编辑于2022年,星期三l 应力状态分类应力状态分类 u 单向应力状态单向应力状态 u 二向应力状态二向应力状态(平面应力状态平面应力状态)u 三向应力状态三向应力状态(空间应力状态空间应力状态)yxzu 简单应力状态(单向应力状态)简单应力状态(单向应力状态)u 复杂应力状态(二向、三向应力状态)复杂应力状态(二向、三向应力状态)xy(1)(2)第10页,共100页,编辑于2022年,星期三 由平衡即可确定任意方向面上

7、的正由平衡即可确定任意方向面上的正应力和切应力。应力和切应力。示例一示例一:FPl/2l/2S平面平面第11页,共100页,编辑于2022年,星期三5432154321123S平面平面FPS平面平面第12页,共100页,编辑于2022年,星期三示例二示例二FPlaS第13页,共100页,编辑于2022年,星期三xzy4321S平面平面FPlaS第14页,共100页,编辑于2022年,星期三MzMx143FPlaSyxz4321FSy第15页,共100页,编辑于2022年,星期三1 1 二向应力状态的实例二向应力状态的实例l薄壁圆筒薄壁圆筒已知已知:p,D,。u 求求x端部总压力端部总压力 8-

8、2 复杂应力状态的工程实例复杂应力状态的工程实例第16页,共100页,编辑于2022年,星期三u 求求xu 求求t取研究对象如图。取研究对象如图。第17页,共100页,编辑于2022年,星期三可得可得由沿由沿y方向的平衡方程方向的平衡方程第18页,共100页,编辑于2022年,星期三可以看出:可以看出:轴向应力轴向应力x是是环向应力环向应力t的一半。的一半。对于薄壁圆筒,有:对于薄壁圆筒,有:所以,可以所以,可以忽略忽略内表面受到的内压内表面受到的内压p 和外表面受和外表面受到的大气压强,近似作为到的大气压强,近似作为二向应力状态二向应力状态处理。处理。第19页,共100页,编辑于2022年,

9、星期三例例 8-1已知已知:蒸汽锅炉,:蒸汽锅炉,=10mm,D=1m,p=3MPa。解:解:求求:三个主应力。:三个主应力。前面已得到前面已得到第20页,共100页,编辑于2022年,星期三2 三向应力状态的实例三向应力状态的实例l 铁路钢轨铁路钢轨第21页,共100页,编辑于2022年,星期三l 二向应力状态的表示二向应力状态的表示l 应力状态分析应力状态分析 在已知过一点的某些截面上的应力时,在已知过一点的某些截面上的应力时,求出过该点的任一截面上的应力,从而求出过该点的任一截面上的应力,从而求出主应力和主平面。求出主应力和主平面。u 切应力的下标切应力的下标作用面的法线作用面的法线切应

10、力的方向切应力的方向8-3 二向应力状态分析的解析法二向应力状态分析的解析法第22页,共100页,编辑于2022年,星期三l 二向应力状态的表示二向应力状态的表示u 切应力的下标切应力的下标作用面的法线作用面的法线切应力的方向切应力的方向u 正负号规定正负号规定_ 正应力正应力拉为正拉为正拉为正拉为正压为负压为负压为负压为负第23页,共100页,编辑于2022年,星期三_ 切应力切应力使单元体顺时针方向转动为使单元体顺时针方向转动为正;反之为负。正;反之为负。_ 截面的截面的方向角方向角由由x正向正向逆时针逆时针转到截面的外法转到截面的外法线线n 的正向的的正向的 角为正角为正;反之为反之为负

11、。负。yx第24页,共100页,编辑于2022年,星期三1 1、斜截面应力、斜截面应力:外法外法线线已知单元体受任意应力已知单元体受任意应力 x、y、xy、yx,求任意求任意 截面应力截面应力 。第25页,共100页,编辑于2022年,星期三平衡对象平衡对象用用 斜截面截取的微元局部斜截面截取的微元局部F F 平衡方程平衡方程 F参加平衡的量参加平衡的量应力乘以其作用的面积应力乘以其作用的面积xyxyyxxy znx ydAq q n t第26页,共100页,编辑于2022年,星期三 -cos)cos(dAx-ydA(sin)sindA +dA(cos)sinxy+dA(sin)cosyx y

12、xdA n tdAcos dAsin 第27页,共100页,编辑于2022年,星期三t t dA-xdA(cos)sin-t t xydA(cos)cos+ydA(sin)cos+t t yxdA(sin)sin yxdA n tdAcos dAsin 第28页,共100页,编辑于2022年,星期三平面应力状态分析平面应力状态分析 斜截面公式应用斜截面公式应用条件条件:1 1)微体(应力均布时,非微体亦可)。)微体(应力均布时,非微体亦可)。2 2)平衡(与物性条件无关)。)平衡(与物性条件无关)。第29页,共100页,编辑于2022年,星期三例题例题 8-2 已知一点应力状态,求图中斜已知一

13、点应力状态,求图中斜面上应力。面上应力。解:已知解:已知Dxy第30页,共100页,编辑于2022年,星期三1 应力圆应力圆(莫尔圆莫尔圆)方程方程由公式由公式平方相加,得平方相加,得8-4 二向应力状态分析的图解法二向应力状态分析的图解法第31页,共100页,编辑于2022年,星期三这是以这是以、为变量的为变量的圆的方程圆的方程。ROC第32页,共100页,编辑于2022年,星期三3、应力圆上的点与单元体面上的应力的对应关系、应力圆上的点与单元体面上的应力的对应关系(1)点面对应点面对应 应力圆上某应力圆上某 一点的坐标值对应着单元体某一方向面上的正应力和一点的坐标值对应着单元体某一方向面上

14、的正应力和切应力切应力;第33页,共100页,编辑于2022年,星期三 基准相当基准相当(2)转向一致转向一致半径旋转方向与方向面半径旋转方向与方向面法线旋转方向一致;法线旋转方向一致;D点和点和x面是基准面是基准;第34页,共100页,编辑于2022年,星期三(2)转向一致转向一致半径旋转方向与方半径旋转方向与方向面法线旋转方向向面法线旋转方向一致;一致;(3)转角两倍转角两倍半径转过的角度是半径转过的角度是方向面法线旋转角方向面法线旋转角度的两倍。度的两倍。第35页,共100页,编辑于2022年,星期三4 应力圆的应用应力圆的应用l 确定主应力、主方向确定主应力、主方向应力圆与横轴的交点应

15、力圆与横轴的交点 A1、B1处,剪应力为零。它们的处,剪应力为零。它们的横坐标横坐标即为即为主应力主应力。从半径。从半径CD转到转到CA1的角度即为从的角度即为从x轴轴转到主平面的角度的两倍。转到主平面的角度的两倍。第36页,共100页,编辑于2022年,星期三u 主应力主应力即为即为A1,B1处的正应力。处的正应力。圆心坐标圆心坐标应力圆半径应力圆半径第37页,共100页,编辑于2022年,星期三u 主方向主方向第38页,共100页,编辑于2022年,星期三l 确定确定面内最大切应力面内最大切应力主剪面对应于应力圆主剪面对应于应力圆上的上的G1和和G2点。面内最点。面内最大切应力的值等于应力

16、大切应力的值等于应力圆的半径。圆的半径。第39页,共100页,编辑于2022年,星期三 x xAD odacxyy45xbeBEl 单向应力状态的应力圆单向应力状态的应力圆245245第40页,共100页,编辑于2022年,星期三BE xy odacbe245245 x xBE第41页,共100页,编辑于2022年,星期三o a(0,)d(0,-)A ADbec245245 BEl 纯切应力状态的应力圆纯切应力状态的应力圆第42页,共100页,编辑于2022年,星期三O2 应力圆的画法应力圆的画法DD RCD(x,xy)D(y,yx)第43页,共100页,编辑于2022年,星期三例题例题 8-

17、3已知已知:x=80MPa,y=-40MPa,xy=-60MPa,yx=60MPa。解解:求求:用应力圆求主应力和主方:用应力圆求主应力和主方向。向。作应力圆作应力圆:由由D点点由由D点点画出应力圆画出应力圆第44页,共100页,编辑于2022年,星期三由由D点点由由D点点画出应力圆画出应力圆E第45页,共100页,编辑于2022年,星期三u 圆心坐标圆心坐标u 半径半径E第46页,共100页,编辑于2022年,星期三u 主平面主平面从从D点点(x轴轴)逆时针转逆时针转45至至A1点,点,u 圆心坐标圆心坐标u 半径半径E由几何关系由几何关系E第47页,共100页,编辑于2022年,星期三Eu

18、 主平面主平面从从D点点(x轴轴)逆时针转逆时针转45至至 A1点,点,由几何关系由几何关系E第48页,共100页,编辑于2022年,星期三例例 题题 8-4 某平面应力状态单元体如图所示,某平面应力状态单元体如图所示,设设及及为已知为已知,试,试解解:确定其主应力及主平面。确定其主应力及主平面。(1)解析法解析法:已知已知由由式式(8-7),有有 第49页,共100页,编辑于2022年,星期三故得故得主应力主应力为为由由式式(8-6)可得可得主平面主平面的的方位角方位角,画出主单元体如图所示画出主单元体如图所示.第50页,共100页,编辑于2022年,星期三由由已知条件在已知条件在-坐坐标系

19、中作应力圆标系中作应力圆如图所示如图所示在图中可求出在图中可求出u 这种这种y0的应力状态,在今后将经常遇到。应力状态,在今后将经常遇到。(2)图解法图解法:E第51页,共100页,编辑于2022年,星期三例题例题 8-5 求图示单元体的主应力及主平面的位置。求图示单元体的主应力及主平面的位置。(单位:单位:MPa)解:解:画画应力坐标系应力坐标系AB的垂直平分线与的垂直平分线与 轴轴的交点的交点C便是圆心,以便是圆心,以C为为圆心,以圆心,以AC为半径画圆为半径画圆应力圆应力圆在在坐标系内画出点坐标系内画出点解法一:应力圆法解法一:应力圆法 1 2C2 p 3 O20MPaBAAB45325

20、32595150第52页,共100页,编辑于2022年,星期三主应力及主平面主应力及主平面 3 1 2C2 p O20MPaBA 1 2 pAB4532532595150第53页,共100页,编辑于2022年,星期三解法二:解析法解法二:解析法解:建立坐标系解:建立坐标系确定确定求出求出 1 1 2 2 3 3ABxy4532532595150ABxy4532532595150第54页,共100页,编辑于2022年,星期三l 三向应力状态三向应力状态三个主应力均不为零的应力状态。三个主应力均不为零的应力状态。yxz8-5 三向应力状态简介三向应力状态简介第55页,共100页,编辑于2022年,

21、星期三l 特例特例至少有一个主应力的大小方向为已知。至少有一个主应力的大小方向为已知。zxyxyyxyxyyxxz平面应力平面应力状态即为这种特例之一。状态即为这种特例之一。第56页,共100页,编辑于2022年,星期三123 123213三种特殊的斜面三种特殊的斜面/1斜面上应力与斜面上应力与 1无关,由无关,由 2 3作应力作应力圆圆 I 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 1/3斜面上应力与斜面上应力与 3无关,由无关,由 1 2作应力作应力圆圆II 3 3 3 3 2 2 2 2 1 1 1 1/2斜面上应力与斜面上应力与 2无关,由无关,由 1

22、 3作应力作应力圆圆 第57页,共100页,编辑于2022年,星期三123l 三向应力状态的应力圆三向应力状态的应力圆IIIIII321 可以证明:与可以证明:与可以证明:与可以证明:与 1 1,2 2,3 3 均不平行的均不平行的均不平行的均不平行的任一方向面上的应力位任一方向面上的应力位任一方向面上的应力位任一方向面上的应力位于阴影区内。于阴影区内。于阴影区内。于阴影区内。第58页,共100页,编辑于2022年,星期三l 最大切应力最大切应力IIIIII 3 21 max=在三组特殊方向面中在三组特殊方向面中 都有各自的都有各自的面内最大面内最大 切应力切应力,即:即:第59页,共100页

23、,编辑于2022年,星期三l 最大、最小正应力最大、最小正应力IIIIII 3 21 最大和最小正应力分别为最大和最小正应力分别为最大和最小主应力,即:最大和最小主应力,即:l 最大切应力最大切应力 max=第60页,共100页,编辑于2022年,星期三l 单向应力状态下的胡克定律单向应力状态下的胡克定律或或l 纯剪切应力状态下的剪切胡克定律纯剪切应力状态下的剪切胡克定律或或l 横向变形与泊松比横向变形与泊松比yx8-6 广义胡克定律广义胡克定律第61页,共100页,编辑于2022年,星期三l 广义胡克定律广义胡克定律u 三向应力状态三向应力状态可看作是三组单向应力状态和可看作是三组单向应力状

24、态和三组纯剪切的组合。三组纯剪切的组合。u 叠加原理叠加原理用叠加原理的用叠加原理的条件条件:(1)各向同性材料;各向同性材料;(2)小变形;小变形;(3)变形在线弹性范围内。变形在线弹性范围内。u x方向的线应变方向的线应变 x x引起的部分引起的部分:yxz第62页,共100页,编辑于2022年,星期三yxzu x方向的线应变方向的线应变 xx引起的部分引起的部分:y引起的部分引起的部分:z引起的部分引起的部分:叠加得:叠加得:第63页,共100页,编辑于2022年,星期三叠加得:叠加得:同理可得:同理可得:剪应变为:剪应变为:这六个公式即为这六个公式即为广义胡克定律广义胡克定律。第64页

25、,共100页,编辑于2022年,星期三对平面应力状态有对平面应力状态有广义胡克定律建立了复杂应力状态下应力与应变广义胡克定律建立了复杂应力状态下应力与应变之间的关系,在工程实际中有着广泛的应用。之间的关系,在工程实际中有着广泛的应用。第65页,共100页,编辑于2022年,星期三例题例题8-5 已知已知:一开槽钢块,槽内嵌入一边长为一开槽钢块,槽内嵌入一边长为10 mm的正方形铝块。的正方形铝块。解:解:已知铝的已知铝的。若不计钢块的变形,。若不计钢块的变形,计算主应力计算主应力选坐标系如图,显然选坐标系如图,显然求铝块的主应力。求铝块的主应力。第66页,共100页,编辑于2022年,星期三由

26、于钢块不变形,所以铝块沿由于钢块不变形,所以铝块沿x方向的线应变等于零。方向的线应变等于零。由式(由式(8-12)解得解得 第67页,共100页,编辑于2022年,星期三例例 题题 8-6 已知已知:受扭圆轴,受扭圆轴,d,E,测得测得 45。求求:外加扭矩的值。:外加扭矩的值。解解:在测点取单元体在测点取单元体u 纯切应力状态纯切应力状态切应力为切应力为要求出要求出45方向的应变,需先求出方向的应变,需先求出 45方向的应力。方向的应力。45方向为主应力方向方向为主应力方向第68页,共100页,编辑于2022年,星期三切应力为切应力为45方向为主应力方向方向为主应力方向由广义胡克定律由广义胡

27、克定律 测扭矩的方法测扭矩的方法第69页,共100页,编辑于2022年,星期三强度理论研究材料失效的判据,从而建立强度条件。强度理论研究材料失效的判据,从而建立强度条件。l 不同材料不同材料在在相同的加载相同的加载情况下,破坏情况下,破坏(失效失效)的形式的形式 不同。不同。u 塑性材料:屈服失效。塑性材料:屈服失效。u 脆性材料:断裂失效。脆性材料:断裂失效。8-7 强度理论强度理论第70页,共100页,编辑于2022年,星期三l 相同材料相同材料在在不同的加载不同的加载情况下,破坏情况下,破坏(失效失效)的形式的形式 不同。不同。u 塑性材料:塑性材料:当有深切槽当有深切槽时,发生断时,发

28、生断裂。应力集裂。应力集中导致根部中导致根部出现三向应出现三向应力状态。力状态。第71页,共100页,编辑于2022年,星期三u 脆性材料:脆性材料:第72页,共100页,编辑于2022年,星期三l 对对单向应力状态单向应力状态和和纯剪切纯剪切通过实验建立强度条件通过实验建立强度条件l 对对复杂应力状态复杂应力状态无法通过实验建立强度条件无法通过实验建立强度条件强度理论强度理论 根据部分实验结果,提出的根据部分实验结果,提出的假说假说。从而可根据从而可根据单向应力状态单向应力状态的实验结果,建立的实验结果,建立复杂复杂应力状态应力状态下的强度条件。下的强度条件。第73页,共100页,编辑于20

29、22年,星期三强度理论分为两类强度理论分为两类:1 最大拉应力理论最大拉应力理论(第一强度理论第一强度理论)l 基本观点基本观点无论是什么应力状态,只要无论是什么应力状态,只要最大拉应力最大拉应力达到材达到材料的某一极限,就发生料的某一极限,就发生脆性断裂脆性断裂。l 失效准则失效准则u 适用于适用于断裂失效断裂失效情况情况u 适用于适用于屈服失效屈服失效情况情况u 单向拉伸失效时单向拉伸失效时u 复杂应力状态时,令复杂应力状态时,令第74页,共100页,编辑于2022年,星期三1 最大拉应力理论最大拉应力理论(第一强度理论第一强度理论)l 基本观点基本观点无论是什么应力状态,只要无论是什么应

30、力状态,只要最大拉应力最大拉应力达到材料的某达到材料的某一极限,就发生一极限,就发生脆性断裂脆性断裂。l 失效准则失效准则l 强度条件强度条件l 相当应力相当应力u 单向拉伸失效时单向拉伸失效时u 复杂应力状态时,令复杂应力状态时,令第75页,共100页,编辑于2022年,星期三l 相当应力相当应力l 适用对象适用对象脆性材料受拉,塑性材料受三向拉伸且脆性材料受拉,塑性材料受三向拉伸且 1、2、3 相近。相近。l 缺缺 点点没有考虑没有考虑 2 和和 3 的影响,且无法应用于没有拉应力的情的影响,且无法应用于没有拉应力的情况。况。2 最大伸长线应变理论最大伸长线应变理论(第二强度理论第二强度理

31、论)l 基本观点基本观点无论是什么应力状态,只要无论是什么应力状态,只要最大伸长线应变最大伸长线应变达到材料的某一极限,达到材料的某一极限,就发生就发生脆性断裂脆性断裂。l 强度条件强度条件第76页,共100页,编辑于2022年,星期三2 最大伸长线应变理论最大伸长线应变理论(第二强度理论第二强度理论)l 基本观点基本观点不论是什么应力状态,只要不论是什么应力状态,只要最大伸长线应变最大伸长线应变达到材料的某一极限,就达到材料的某一极限,就发生发生脆性断裂脆性断裂。l 失效准则失效准则u 单向拉伸失效时单向拉伸失效时u 复杂应力状态时,令复杂应力状态时,令第77页,共100页,编辑于2022年

32、,星期三l 适用对象适用对象脆性材料受压。脆性材料受压。l 失效准则失效准则l 强度条件强度条件l 相当应力相当应力l 缺缺 点点对脆性材料受拉与试验符合不好。对脆性材料受拉与试验符合不好。u 单向拉伸失效时单向拉伸失效时u 复杂应力状态时,令复杂应力状态时,令第78页,共100页,编辑于2022年,星期三3 最大切应力理论最大切应力理论(第三强度理论第三强度理论)l 基本观点基本观点无论是什么应力状态,只要无论是什么应力状态,只要最大切应力最大切应力达到材料的某一极限,就达到材料的某一极限,就发生发生塑性屈服塑性屈服。l 失效准则失效准则u 单向拉伸失效时单向拉伸失效时u 复杂应力状态时复杂

33、应力状态时l 强度条件强度条件第79页,共100页,编辑于2022年,星期三l 失效准则失效准则l 强度条件强度条件l 适用对象适用对象塑性材料的一般受力状态。塑性材料的一般受力状态。l 相当应力相当应力l 缺点缺点偏于安全;没有考虑偏于安全;没有考虑 2 的影响。的影响。4 形状改变比能理论形状改变比能理论(第四强度理论第四强度理论)l 形状改变比能形状改变比能第80页,共100页,编辑于2022年,星期三4 形状改变比能理论形状改变比能理论(第四强度理论第四强度理论)l 基本观点基本观点不论是什么应力状态,只要不论是什么应力状态,只要形状改变比能形状改变比能达到材料的某一极限,达到材料的某

34、一极限,就发生就发生塑性屈服塑性屈服。l 失效准则失效准则u 单向拉伸失效时单向拉伸失效时代入上式得代入上式得第81页,共100页,编辑于2022年,星期三l 失效准则失效准则u 单向拉伸失效时单向拉伸失效时代入上式得代入上式得u 复杂应力状态时复杂应力状态时令上式在复杂应力状态时成立,得令上式在复杂应力状态时成立,得第82页,共100页,编辑于2022年,星期三l 失效准则失效准则u 复杂应力状态时复杂应力状态时令上式在复杂应力状态时成立,得令上式在复杂应力状态时成立,得l 强度条件强度条件l 相当应力相当应力第83页,共100页,编辑于2022年,星期三l 适用对象适用对象塑性材料的一般受

35、力状态。塑性材料的一般受力状态。l 缺点缺点计算计算相当应力相当应力较麻烦。较麻烦。l 强度条件强度条件l 相当应力相当应力l 第三强度理论和第四强度理论的图形第三强度理论和第四强度理论的图形第84页,共100页,编辑于2022年,星期三l 第三强度理论和第四强度理论的图形第三强度理论和第四强度理论的图形在在二向二向应力状态应力状态下,第三强度理论和第四强度下,第三强度理论和第四强度理论的图形为理论的图形为第85页,共100页,编辑于2022年,星期三5 小结小结 u 强度条件可统一写为强度条件可统一写为u 第一强度理论和第二强度理论适用于第一强度理论和第二强度理论适用于脆性脆性材料材料;脆性

36、材料受脆性材料受拉拉 u 第三强度理论和第四强度理论适用于第三强度理论和第四强度理论适用于塑性塑性材料材料。脆性材料受脆性材料受压压 第86页,共100页,编辑于2022年,星期三6 几种常见应力状态的相当应力几种常见应力状态的相当应力(1)单向拉伸单向拉伸 即:在单向拉伸应力状态下,各即:在单向拉伸应力状态下,各相当应力相当应力相同。相同。第87页,共100页,编辑于2022年,星期三(2)纯剪切纯剪切第88页,共100页,编辑于2022年,星期三(3)弯曲时一般位置处的应力状态弯曲时一般位置处的应力状态第89页,共100页,编辑于2022年,星期三第90页,共100页,编辑于2022年,星

37、期三例题例题8-7 圆筒形薄壁容器承受内压为圆筒形薄壁容器承受内压为 p,容器内径为容器内径为D,厚度为厚度为.试按第三试按第三和第四强度理论写出相当应力。和第四强度理论写出相当应力。解解:薄壁圆筒内的任一点均处于二向应力状态薄壁圆筒内的任一点均处于二向应力状态,其主应力为其主应力为 其第三和第四强度理论的其第三和第四强度理论的相当应力相当应力 第91页,共100页,编辑于2022年,星期三例题例题 8-8 试分别根据试分别根据 第三和第四强度理论第三和第四强度理论,建立塑性材料的许用切应建立塑性材料的许用切应力力与许用正应力与许用正应力之间的关系。之间的关系。解解:考虑图示纯剪应力状态考虑图

38、示纯剪应力状态,其三个主应力分别为其三个主应力分别为 对于塑性材料对于塑性材料,若采用第三强度理论若采用第三强度理论,则则强度条件为强度条件为 ,即即另一方面另一方面,根据根据纯剪切强度条件纯剪切强度条件 两者比较两者比较,可得可得 第92页,共100页,编辑于2022年,星期三 对于塑性材料对于塑性材料,若采用第四强度理论若采用第四强度理论,则则强度条件为强度条件为 ,即即根据根据纯剪切强度条件纯剪切强度条件 比较比较,可得可得 通常取塑性材料的许用切应力通常取塑性材料的许用切应力第93页,共100页,编辑于2022年,星期三例题例题 8-9 工字形截面钢梁如图。已知工字形截面钢梁如图。已知

39、F=210 kN;许用应力;许用应力=160 MPa,=90 MPa;截面高度截面高度 h=250 mm 宽度宽度 b=113 mm.腹板和翼缘的厚度腹板和翼缘的厚度t=10mm与与=13 mm.截面轴截面轴惯性矩惯性矩 Iz=5250 mm4.试按第三强度理论校核梁的强度。试按第三强度理论校核梁的强度。解解:(1)作作梁的剪力梁的剪力图和弯矩图和弯矩图图 第94页,共100页,编辑于2022年,星期三解解:(1)作作梁的剪力梁的剪力图和弯矩图和弯矩图图 最大剪力最大剪力和最大弯和最大弯矩在矩在C C 截截面处面处 第95页,共100页,编辑于2022年,星期三(2)校核弯曲正应力强度校核弯曲

40、正应力强度 (3)校核弯曲切应力强度校核弯曲切应力强度 第96页,共100页,编辑于2022年,星期三(4)校核危险截面腹板与翼缘交界处点的强度校核危险截面腹板与翼缘交界处点的强度 第97页,共100页,编辑于2022年,星期三作业作业习题:习题:8-4a)(解析法解析法)、b)(几何法几何法),8-13,8-15c),8-19,8-30。课外练习课外练习习题:习题:8-3,8-7,8-9,8-15a)、b),8-20,8-25。第98页,共100页,编辑于2022年,星期三Questions/Comments?第99页,共100页,编辑于2022年,星期三Thanks!Thanks!Thats all for today!第100页,共100页,编辑于2022年,星期三

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁