六年级数学奥数习题讲义《对策问题》.pdf

上传人:君**** 文档编号:43605924 上传时间:2022-09-17 格式:PDF 页数:6 大小:109.81KB
返回 下载 相关 举报
六年级数学奥数习题讲义《对策问题》.pdf_第1页
第1页 / 共6页
六年级数学奥数习题讲义《对策问题》.pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《六年级数学奥数习题讲义《对策问题》.pdf》由会员分享,可在线阅读,更多相关《六年级数学奥数习题讲义《对策问题》.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1六年级数学奥数习题讲义-第 37 讲 对策问题一、知识要点一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利.生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”.哪一方的策略更胜一筹,哪一方就会取得最终的胜利.解决这类问题一般采用逆推法和归纳法.二、精讲精练二、精讲精练【例题例题 1】1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走 1至 7

2、 根火柴,直到移尽为止.挨到谁移走最后一根火柴就算谁输.如果开始时有 1000 根火柴,首先移火柴的人在六年级数学奥数习题讲义-第一次移走多少根时才能在游戏中保证获胜.先移火柴的人要取胜,只要取走六年级数学奥数习题讲义-第 999 根火柴,即利用逆推法就可得到答案.设先移的人为甲,后移的人为乙.甲要取胜只要取走六年级数学奥数习题讲义-第 999 根火柴.因此,只要取到六年级数学奥数习题讲义-第 991 根就可以了(如乙取 1 根甲就取 7 根;如乙取 2 根甲就取 6 根.依次类推,甲取的与乙取的之和为 8 根火柴).由此继续推下去,甲只要取六年级数学奥数习题讲义-第 983 根,六年级数学奥

3、数习题讲义-第 975 根,六年级数学奥数习题讲义-第 7 根就能保证获胜.所以,先移火柴的人要保证获胜,六年级数学奥数习题讲义-第一次应移走 7 根火柴.练习练习 1:1:1、一堆火柴 40 根,甲、乙两人轮流去拿,谁拿到最后一根谁胜.每人每次可以拿 1 至 3根,不许不拿,乙让甲先拿.问:谁能一定取胜?他要取胜应采取什么策略?22、两人轮流报数,规定每次报的数都是不超过 8 的自然数,把两人报的数累加起来,谁先报到 88,谁就获胜.问:先报数者有必胜的策略吗?3、把 1994 个空格排成一排,六年级数学奥数习题讲义-第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移 1 格、2 格

4、、3 格,谁先移到最后一格谁胜.先移者确保获胜的方法是什么?【例题例题 2】2】有 1987 粒棋子.甲、乙两人分别轮流取棋子,每次最少取 1 粒,最多取 4 粒,不能不取,取到最后一粒的为胜者.现在两人通过抽签决定谁先取.你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去.不妨设甲先取,乙后取,剩下 1 至 4 粒,甲可以一次拿完.如果剩下5 粒棋子,则甲不能一次拿完,乙胜.因此甲想取胜,只要在某一时刻留下 5 粒棋子就行了.不妨设甲先取,则甲能取胜.甲六年级数学奥数习题讲义-第一次取 2 粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于 5,这样,每一

5、轮后,剩下的棋子粒数总是 5 的倍数,最后总能留下 5 粒棋子,因此,甲先取必胜.练习练习 2:2:1、甲、乙两人轮流从 1993 粒棋子中取走 1 粒或 2 粒或 3 粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?32、有 1997 根火柴,甲、乙两人轮流取火柴,每人每次可取 1 至 10 根,谁能取到最后一根谁为胜利者,甲先取,乙后取.甲有获胜的可能吗?取胜的策略是什么?3、盒子里有 47 粒珠子,两人轮流取,每次最多取 5 粒,最少取 1 粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?【

6、例题例题 3】3】在黑板上写有 999 个数:2,3,4,1000.甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜.谁必胜?必胜的策略是什么?甲先擦去 1000,剩下的 998 个数,分为 499 个数对:(2,3),(4,5),(6,7),(998,999).可见每一对数中的两个数互质.如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质.所以,甲必胜.练习练习 3:3:1 1、甲、乙两人轮流从分别写有 1,2,3,99 的 99 张卡片中任意取走一张,先取卡的人能否保证在他取

7、走的六年级数学奥数习题讲义-第 97 张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?42、两个人进行如下游戏,即两个人轮流从数列 1,2,3,100,101 勾去九个数.经过这样的 11 次删除后,还剩下两个数.如果这两个数的差是 55,这时判六年级数学奥数习题讲义-第一个勾数的人获胜.问六年级数学奥数习题讲义-第一个勾数的人能否获胜?获胜的策略是什么?3、在黑板上写 n1(n3)个数:2,3,4,n.甲、乙两人轮流在黑板上擦去一个数.如果最后剩下的两个数互质,则乙胜,否则甲胜.N 分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?【例题例题 4】4】甲、乙两人轮流在黑板

8、上写下不超过 10 的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者.如果甲六年级数学奥数习题讲义-第一个写,谁一定获胜?写出一种获胜的方法.这里关键是六年级数学奥数习题讲义-第一次写什么数,总共只有 10 个数,可通过归纳试验.甲不能写 1,否则乙写 6,乙可获胜;甲不能写 3,5,7,否则乙写 8,乙可获胜;甲不能写4,9,10,否则乙写 6,乙可获胜.因此,甲先写 6 或 8,才有可能获胜.甲可以获胜.如甲写 6,去掉 6 的约数 1,2,3,6,乙只能写 4,5,7,8,9,10 这六个数中的一个,将这六个数分成(4,5),(7,9),(8,10)三组,当乙写某组中

9、的一个数,甲就写另一个数,甲就能获胜.练习练习 4:4:1、甲、乙两人轮流在黑板上写上不超过 14 的自然数.书写规则是:不允许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者.现甲先写,乙后写,谁能获胜?应采取什么对策?5D DC CB BA A3 37 7-1 12、甲、乙两人轮流从分别写有 3,4,5,11 的 9 张卡片中任意取走一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就输.现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?3、甲、乙两人轮流在 2004 粒棋子中取走 1 粒,3 粒,5 粒或 7 粒棋子.甲先取,乙后取,取到最后一粒棋子者为胜者.甲、乙两

10、人谁能获胜?【例题例题 5】5】有一个 33 的棋盘以及 9 张大小为一个方格的卡片如图 37-1 所示,9 张卡片分别写有:1,3,4,5,6,7,8,9,10 这几个数.小兵和小强两人做游戏,轮流取一张卡片放在 9 格中的一格,小兵计算上、下两行 6 个数的和;小强计算左、右两列 6 个数的和,和数大的一方取胜.小兵一定能取胜吗?如图 37-1 所示,由于 4 个角的数是两人共有的,因而和数的大小只与放在A,B,C,D 这 4 个格中的数有关.小兵要获胜,必须采取如下策略,尽可能把大数填入 A 或 C 格,尽可能将小数填入 B 格或 D 格.由于 1+103+9,即 B+DA+C,小兵应先

11、将 1 放在 B 格,如小强把 10 放进 D 格,小兵再把 9 放进 A 格,这时不论小强怎么做,C 格中一定是大于或等于 3 的数,因而小兵获胜.如小强把 3 放进 A 格,小兵只需将 9 放到 C 格,小兵也一定获胜.练习练习 5:5:1 1、在 55 的棋盘的右上角放一枚棋子,每一步只能向左、想下或向左下对角线走一格.两人交替走,谁为胜者.必胜的策略是什么?62、甲、乙两人轮流往一个圆桌面上放同样大小的硬币,规则是每人每次只能放一枚,硬币不能重叠,谁放完最后一枚硬币而使对方再无处可放,谁就获胜.如果甲先放,那么他怎样才能取胜?3、两人轮流在 33 的方格中画“”和“”,规定每人每次至少画一格,至多画三格,所有的格画满后,谁画的符号总数为偶数,谁就获胜.谁有获胜的策略?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁