《鸡兔同笼问题教案.doc》由会员分享,可在线阅读,更多相关《鸡兔同笼问题教案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教学目标: 1、通过学生对一些日常中的现象的观察与思考,从中发现一些特殊的规律。2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。3、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。教学重难点:1、尝试用不同的方法解决“鸡兔同笼”问题。2、在解决问题的过程中培养学生的逻辑推理能力。教学教具:多媒体课件教学过程:一、创设情境,激情导入1出示原题师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,孙子算经就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示孙子算经中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔
2、各几何?2理解题意师:同学们知道这道题的意思吗?请试着说一说。师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?3揭示课题师:这就是著名的“鸡兔同笼”问题,也正是这节课要研究的问题。【设计意图】从古书中的原题引入,激发学生的兴趣,使学生感受古代数学文化,增强民族自豪感。激发了学生的求知欲和探究欲望,为下面的学习做好了铺垫。二、合作探索,主动构建1出示例1师:为便于研究,我们可先从简单问题入手,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8
3、个头,从下面数,有26只脚,鸡和兔各有几只?2理解题意师:“从上面数,有8个头;从下面数,有26只脚”分别是什么意思?3尝试、探究1)、猜测、列表法师:猜一猜鸡和兔可能有多少只?(生猜)师:“有了大胆的猜想才会有伟大的发明和发现”。师:刚才,我们是在随意猜,其实还可以有顺序的来猜。(课件出示表格)鸡876543210兔012345678脚161820222426283032师:如果先猜有8只鸡和0只兔,就有几只脚;和题目中26只脚相不相同?这说明了什么?怎么办?如果再猜有7只鸡和1只兔,就有几只脚,脚的只数怎样?(还少);如果把兔的只数再增加1只,鸡变为多少只,脚有几条?发现了什么了?师:看来
4、大家都有一双善于发现的眼睛。在鸡和兔的总只数不变的情况下,每增加1只兔、减少1只鸡,脚的总只数增加2只;反之,每减少1只兔,增加1只鸡,脚的总只数减少2只。这个2是怎么来的呢?按照这样的方法试下去,能不能得到鸡和兔的只数呢?你们感觉这种方法怎样?生:当头和脚的只数较多时,用一一列举不容易找出答案,我们有研究新方法的必要。【设计意图】通过列表法,让学生寻找这道鸡免同笼的答案,增强学生的自信心,激励他们自主探究数学问题的动力。2)、假设法A、假设全是鸡师:上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)生对着自己写的算式说想法:假设笼子里全是鸡,就有28
5、=16只脚,而笼子里实际有26只脚,这样就少了2616=10只脚,需要把鸡换成兔,而1只兔比1只鸡多2只脚,这样就有102=5只兔,鸡的只数就是85=3只了。师:算出来后,我们还要检验算的对不对,口头检验。B、假设全是兔师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。(学生讨论写算式,然后指名板演。)师:这是一位同学写的算式,我们来听听他是怎么想的。假设笼子里全是兔,就有48=32只脚,这样比实际的脚数多了3226=6只脚,需要把兔换成鸡,1只鸡比1只兔少2只脚,这多的6只脚就需要把3只兔换成3只鸡,这样就有62=3只鸡,也就知道有8
6、3=5只兔了。师:在列表、画图的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。(假设法)C、总结方法:算术法。小组合作交流,同桌讨论,尝试独立列式解答。 集体反馈。鸡数(兔脚数总头数总脚数)(兔脚数鸡脚数).兔数(总脚数鸡脚数总头数)(兔脚数鸡脚数).【设计意图】由于假设法是本节课学习的重点、难点,因此在学生汇报解题方法时,我主要通过让学生动手摆一摆的方法,搭建起从形象思维过渡到抽象思维。经过适时的点拨,帮助学生建立解决问题的方法,突出重点、突破难点,掌握方法,体验成功。3)、方程法:除了以上两种方法,还有别的计算方法
7、了吗?学生汇报列方程的方法。师:要用列方程的方法就必须找到等量关系式。通过题目的信息能写出哪些等量关系式呢?(学生汇报,课件出示:兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)用方程解:(见书第114页有另一种解法)解:设鸡有x只,兔有(8x)只根据鸡兔共有26只脚来列方程式2x(8x)4=262X+32-4X =26 (师生共同解方程) 32-2X =26 2X =32-26 2X =6 X =62 X=3 83=5(只)4、小结:引导学生寻求一般性的解题方法,即假设法和方程法,鼓励学生从不同的角度思考问题,选择适合自己的方法。【设计意图】通过适时的总结,引领学生找到解决鸡兔同笼问题的一般性的方法。5、介绍古人用的抬腿法:(见书第114页)小结:古人所用的“抬腿法”其实也是假设法中的一种思路,可见古人的解题思路是多么的巧妙。算术法: 总脚数2总头数兔子数.【设计意图】让学生感受古人巧妙的解题思路,使学生体会研究鸡兔同笼问题的价值。三、巩固练习回应引入时的古题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)四、拓展练习:第115页“做一做”第1至2题(龟相当于兔,鹤相当于鸡)(大船相当于“兔”,小船相当于“鸡”)五、全课小结:同学们,现在我们来一起回忆一下,想一想你在本节课都学习了什么。