《中考数学压轴题精选(四)及答案.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题精选(四)及答案.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、31、(2010眉山)如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上(1)求抛物线对应的函数关系式;(2)若DCE是由ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N设点M的横坐标为t,MN的长度为l求l及t之间的函数关系式,并求l取最大值时,点M的坐标解:(1)由题意,可设所求抛物线对应的函数关系式为 所求函数关系式为: (2)在RtABO中,
2、OA=3,OB=4,四边形ABCD是菱形,BC=CD=DA=AB=5 C、D两点的坐标分别是(5,4)、(2,0) 当时,当时,点C和点D在所求抛物线上 (3)设直线CD对应的函数关系式为,则,解得:,MNy轴,M点的横坐标为t,N点的横坐标也为t则, , , 当时,此时点M的坐标为(,) 32、(2010绵阳)如图,抛物线y = ax2 + bx + 4及x轴的两个交点分别为A(4,0)、B(2,0),及y轴交于点C,顶点为DE(1,2)为线段BC的中点,BC的垂直平分线及x轴、y轴分别交于F、G(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使CDH的周长最小,
3、并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,EFK的面积最大?并求出最大面积CEDGAxyOBF解:(1)由题意,得 解得,b =1所以抛物线的解析式为,顶点D的坐标为(1,)(2)设抛物线的对称轴及x轴交于点M因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH + CH最小,即最小为DH + CH = DH + HB = BD = 而 CDH的周长最小值为CD + DR + CH =设直线BD的解析式为y = k1x + b,则 解得 ,b1 = 3所以直线BD的解析式为y =x + 3由于BC = 2,CE
4、 = BC2 =,RtCEGCOB,得 CE : CO = CG : CB,所以 CG = 2.5,GO = 1.5G(0,1.5)同理可求得直线EF的解析式为y =x +联立直线BD及EF的方程,解得使CDH的周长最小的点H(,)(3)设K(t,),xFtxE过K作x轴的垂线交EF于N则 KN = yKyN =(t +)=所以 SEFK = SKFN + SKNE =KN(t + 3)+KN(1t)= 2KN = t23t + 5 =(t +)2 +即当t =时,EFK的面积最大,最大面积为,此时K(,)33、(2010南充)已知抛物线上有不同的两点E和F(1)求抛物线的解析式(2)如图,抛
5、物线及x轴和y轴的正半轴分别交于点A和B,M为AB的中点,PMQ在AB的同侧以M为中心旋转,且PMQ45,MP交y轴于点C,MQ交x轴于点D设AD的长为m(m0),BC的长为n,求n和m之间的函数关系式(3)当m,n为何值时,PMQ的边过点FBAMCDOPQxy解:(1)抛物线的对称轴为抛物线上不同两个点E和F的纵坐标相同,点E和点F关于抛物线对称轴对称,则,且k2抛物线的解析式为(2)抛物线及x轴的交点为A(4,0),及y轴的交点为B(0,4),AB,AMBM在PMQ绕点M在AB同侧旋转过程中,MBCDAMPMQ45,在BCM中,BMCBCMMBC180,即BMCBCM135,在直线AB上,
6、BMCPMQAMD180,即BMCAMD135BCMAMD故BCMAMD,即,故n和m之间的函数关系式为(m0)(3)F在上, ,化简得,k11,k23即F1(2,0)或F2(4,8)MF过M(2,2)和F1(2,0),设MF为, 则解得,直线MF的解析式为直线MF及x轴交点为(2,0),及y轴交点为(0,1)若MP过点F(2,0),则n413,m;若MQ过点F(2,0),则m4(2)6,nMF过M(2,2)和F1(4,8),设MF为, 则解得,直线MF的解析式为直线MF及x轴交点为(,0),及y轴交点为(0,)若MP过点F(4,8),则n4(),m;若MQ过点F(4,8),则m4,n故当或时
7、,PMQ的边过点F34、(2010南平)如图1,在ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC及PD相交于点E,已知ABC=AEP=(00),则,解得,(舍去)点B的横坐标是(2)当,时,得()以下分两种情况讨论情况1:设点C在第一象限(如图甲),则点C的横坐标为,OyxCBA(甲)11-1-1由此,可求得点C的坐标为(,),点A的坐标为(,),A,B两点关于原点对称,OyxCBA(乙)11-1-1点B的坐标为(,)将点A的横坐标代入()式右边,计算得,即等于点A的纵坐标;将点B的横坐标代入()式右边,计算得,即等于点B的纵坐标在这种情况下,A,B两点都
8、在抛物线上情况2:设点C在第四象限(如图乙),则点C的坐标为(,-),点A的坐标为(,),点B的坐标为(,)经计算,A,B两点都不在这条抛物线上(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上所以A,B两点不可能都在这条抛物线上)存在m的值是1或-1(,因为这条抛物线的对称轴经过点C,所以-1m1当m=1时,点C在x轴上,此时A,B两点都在y轴上因此当m=1时,A,B两点不可能同时在这条抛物线上)39、(2010日照)如图,在ABC中,AB=AC,以AB为直径的O交AC及E,交BC及D求证:(1)D是BC的中点;(2)BECADC;(3)BC2
9、=2ABCE解:(1)证明:AB是O的直径,ADB=90 ,即AD是底边BC上的高又AB=AC,ABC是等腰三角形, D是BC的中点; (2) 证明:CBE及CAD是同弧所对的圆周角, CBE=CAD 又 BCE=ACD, BECADC;(3)证明:由BECADC,知,即CDBC=ACCE D是BC的中点,CD=BC 又 AB=AC,CDBC=ACCE=BC BC=ABCE即BC=2ABCE40、(2010绍兴)如图,设抛物线C1:, C2:,C1及C2的交点为A, B,点A的坐标是,点B的横坐标是2. (1)求的值及点B的坐标; (2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的
10、右侧作正三角形DHG. 记过C2顶点的直线为,且及x轴交于点N. 若过DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标; 若及DHG的边DG相交,求点N的横坐标的取值范围.解:(1) 点A在抛物线C1上, 把点A坐标代入得 =1. 图1 抛物线C1的解析式为, 设B(2,b), b4, B(2,4) . (2)如图1, M(1, 5),D(1, 2), 且DHx轴, 点M在DH上,MH=5. 过点G作GEDH,垂足为E,由DHG是正三角形,可得EG=, EH=1, ME4. 图2设N ( x, 0 ), 则 NHx1,由MEGMHN,得 , 点N的横坐标为 当点移到及点A重合时,如图2,直线及DG交于点G,此时点的横坐标最大图3图4过点,作x轴的垂线,垂足分别为点,F,设(x,0), A (2, 4), G (, 2), NQ=,F =, GQ=2, MF =5. NGQNMF,当点D移到及点B重合时,如图3,直线及DG交于点D,即点B,此时点N的横坐标最小. B(2, 4), H(2, 0), D(2, 4),设N(x,0), BHNMFN, , 点N横坐标的范围为 x. 第 12 页