2022年四川省攀枝花市中考数学试卷 .pdf

上传人:C****o 文档编号:38625320 上传时间:2022-09-04 格式:PDF 页数:23 大小:687.81KB
返回 下载 相关 举报
2022年四川省攀枝花市中考数学试卷 .pdf_第1页
第1页 / 共23页
2022年四川省攀枝花市中考数学试卷 .pdf_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2022年四川省攀枝花市中考数学试卷 .pdf》由会员分享,可在线阅读,更多相关《2022年四川省攀枝花市中考数学试卷 .pdf(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、四川省攀枝花市中考数学试卷一、选择题(每小题3 分,共 30 分)1 ( 3 分) (2014?攀枝花) 2 的绝对值是()A 2 B2CD2 考点 : 绝对值分析 : 根据绝对值实数轴上的点到原点的距离,可得答案解答 : 解: 2 的绝对值是2故选: B点评 : 本题考查了绝对值,正的绝对值等于它本身2 ( 3 分) (2014?攀枝花)为促进义务教育办学条件均衡,某市投入480 万元资金为部分学校添置实验仪器及音、体、美器材,480 万元用科学记数法表示为()A480 104 元B48 105 元C4.8 106 元D0.48 107 元考点 : 科学记数法 表示较大的数分析 : 科学记数

2、法的表示形式为a 10n 的形式,其中1|a|10,n 为整数确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值 1 时, n 是正数;当原数的绝对值1 时, n 是负数解答 : 解:将 480 万用科学记数法表示为:4.8 106故选:C点评 : 此题考查科学记数法的表示方法科学记数法的表示形式为a 10n 的形式, 其中 1|a|10,n 为整数,表示时关键要正确确定a 的值以及n 的值3 ( 3 分) (2014?攀枝花)下列运算中,计算结果正确的是()Am( m+1) =1 B (2m)2=2m2 Cm3?m2=m6 Dm3+m2=

3、m5 考点 : 幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 23 页分析 : 根据合并同类项的法则,同底数幂的乘法与积的乘方的知识求解即可求得答案解答 : 解: A、m( m+1)=1,故 A 选项正确;B、 ( 2m)2=4m2,故 B 选项错误;C、m3?m2=m5,故 C 选项错误;D、m3+m2,不是同类项,故D 选项错误故选: A点评 : 此题考查了合并同类项的法则,同底数幂的乘法与积的乘方的知识,解题要注意细心4 (3分) (2014?攀枝花)下列说法正确的是

4、()A “ 打开电视机,它正在播广告” 是必然事件B “ 一个不透明的袋中装有8 个红球,从中摸出一个球是红球” 是随机事件C为了了解我市今年夏季家电市场中空调的质量,不宜采用普查的调查方式进行D销售某种品牌的凉鞋,销售商最感兴趣的是该品牌凉鞋的尺码的平均数考点 : 随机事件;全面调查与抽样调查;统计量的选择分析 : 根据随机事件、必然事件,可判断A、B,根据调查方式,可判断C,根据数据的集中趋势,可判断D解答 : 解: A、是随机事件,故A 错误;B、是必然事件,故B 错误;C、调查对象大,适宜于抽查,故C 正确;D、销售商最感兴趣的是众数,故D 错误;故选: C点评 : 本题考查了随机事件

5、,解决本题需要正确理解必然事件、不可能事件、随机事件的概念用到的知识点为:确定事件包括必然事件和不可能事件必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5 ( 3 分) (2014?攀枝花)因式分解a2bb 的正确结果是()Ab(a+1) (a1)Ba(b+1) (b1)Cb( a21)Db(a1)2 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 23 页考点 : 提公因式法与公式法的综合运用分析 : 先提取公因式b,再对余下的多项式利用

6、平方差公式继续分解解答 : 解: a2bb=b( a21)=b( a+1) (a1) 故选 A点评 : 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止6 ( 3 分) (2014?攀枝花)当kb0 时,一次函数y=kx+b 的图象一定经过()A第一、三象限B 第一、四象限C第二、三象限D第二、四象限考点 : 一次函数图象与系数的关系分析 : 根据 k,b 的取值范围确定图象在坐标平面内的位置关系,从而求解解答 : 解: kb0,k、b 异号当 k0 时, b0,此时一次函数y=kx+b 的图象经过

7、第一、三、四象限;当 k0 时, b0,此时一次函数y=kx+b 的图象经过第一、二、四象限;综上所述,当kb 0 时,一次函数y=kx+b 的图象一定经过第一、四象限故选 B点评 : 本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系 解答 本题注意理解:直线 y=kx+b 所在的位置与k、b 的符号有直接的关系k0 时,直线必经过一、三象限;k0 时,直线必经过二、四象限b0 时,直线与y 轴正半轴相交;b=0 时,直线过原点; b0 时,直线与y 轴负半轴相交7 ( 3 分) (2014?攀枝花)下列说法正确的是()A 多边形的外角和与边数有关B 平行四边形既是轴对称图形,又是中

8、心对称图形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 23 页C当两圆相切时,圆心距等于两圆的半径之和D三角形的任何两边的和大于第三边考点 : 多边形内角与外角;三角形三边关系;圆与圆的位置关系;中心对称图形分析 : 根据多边形的外角和是360 ,可以确定答案A;平行四边形只是中心对称图形,可以确定答案B;当两圆相切时,可分两种情况讨论,确定答案C;三角形的两边之和大于第三遍,可以确定答案D解答 : 解:A、多边形的外角和是360 ,所以多边形的外角和与边数无关,所以答案A 错误;B、平行四边形只是中心对称图形,不是轴对称图形,所以

9、答案B错误;C、当两圆相切时,分两种情况:两圆内切和两圆外切,结果有两种,所以答案C 错误;D、答案正确故选: D点评 : 本题考查了基本定义的应用,解答 此类问题的关键在于熟练记住基本定理、性质以及公式的运用8(3 分)(2014?攀枝花)若方程 x2+x1=0 的两实根为 、 , 那么下列说法不正确的是()A + =1 B =1 C 2+ 2=3 D+=1 考点 : 根与系数的关系专题 : 计算题分析 : 先根据根与系数的关系得到 + =1,=1,再利用完全平方公式变形 2+ 2 得到( + )22,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断解

10、答 : 解:根据题意得 + =1,=1所以 2+ 2=( + )22=( 1)22 ( 1)=3;+=1故选 D精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 23 页点评 : 本题考查了一元二次方程ax2+bx+c=0(a0 )的根与系数的关系:若方程两个为x1,x2,则 x1+x2=,x1?x2=9 ( 3 分) (2014?攀枝花)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点 A 开始按 ABCDAEFGAB 的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是()A点 FB 点 EC点

11、AD点 C考点 : 菱形的性质;规律型:图形的变化类分析 : 观察图形不难发现,每移动8cm 为一个循环组依次循环,用2014 除以 8,根据商和余数的情况确定最后停的位置所在的点即可解答 : 解:两个菱形的边长都为1cm,从 A 开始移动8cm 后回到点A,2014 8=251 余 6,移动 2014cm 为第 252 个循环组的第6cm,在点 F 处故选 A点评 : 本题是对图形变化规律的考查,观察图形得到每移动8cm 为一个循环组依次循环是解题的关键10 (3 分) (2014?攀枝花)如图,正方形ABCD 的边 CD 与正方形CGEF 的边 CE 重合, O是 EG 的中点, EGC

12、的评分项GH 过点 D,交 BE 于 H,连接 OH、FH 、EG 与 FH 交于M,对于下面四个结论:GHBE; HOBG;点 H 不在正方形CGFE 的外接圆上;GBE GMF其中正确的结论有()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 23 页A1 个B 2 个C3 个D4 个考点 : 四边形综合题分析 : (1) 由四边形 ABCD 和四边形CGFE 是正方形,得出 BCE DCG, 推出 GHBE;(2)由 GH 是 EGC 的平分线,得出BGH EGH,再由 O 是 EG 的中点,得出=,即 HO=BG;(3) EHG

13、 是直角三角形,因为O 为 FG 的中点,所以OH=OG=OE,得出点H 在正方形 CGFE 的外接圆上;(4)连接CF ,由点H 在正方形CGFE的外接圆上,得到HFC = CGH,由HFC + FMG=90 ,CGH+GBE=90 ,得出FMG = GBE ,所以GBE GMF 解答 : 解: (1)如图,四边形ABCD 和四边形CGFE 是正方形,BC=CD,CE=CG, BCE=DCG,在BCE和DCG中, BCE DCG(SAS ) , BEC= BGH, BGH+CDG=90 , CDG=HDE, BEC+HDE =90 ,GHBE故正确,(2) GH 是 EGC 的平分线,精选学

14、习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 23 页 BGH=EGH,在 BGH 和 EGH 中 BGH EGH(ASA) ,BH=EH,O 是 EG 的中点,=,HO=BG,故正确(3)由( 1)得 EHG 是直角三角形,O 为 FG 的中点,OH=OG=OE,点 H 在正方形CGFE 的外接圆上,故错误,(4)如图 2,连接 CF,由( 3)可得点H 在正方形CGFE 的外接圆上, HFC =CGH, HFC +FMG=90 , CGH+GBE=90 , FMG=GBE,又 EGB=FGM=45 , GBE GMF 精选学习资料 -

15、- - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 23 页故正确,故选: C点评 : 本题主要考查了四边形的综合题,解题的关键是能灵活利用三角形全等的判定和性质来解题二、填空(每小题4 分,共 24 分)11 (4 分) (2014?攀枝花)函数中,自变量x 的取值范围是x2 考点 : 函数自变量的取值范围分析 : 根据二次根式的性质,被开方数大于等于0,就可以求解解答 : 解:依题意,得x20 ,解得:x2,故答案为: x2 点评 : 本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数12 (4 分) (2014?攀枝花)如图,

16、是八年级(3)班学生参加课外活动人数的扇形统计图,如果参加艺术类的人数是16 人,那么参加其它活动的人数是4人考点 : 扇形统计图分析 : 先求出参加课外活动人数,再求出参加其它活动的人数即可解答 : 解:参加艺术类的学生占的比例为32%,参加课外活动人数为:16 32%=50 人,则其它活动的人数50 ( 120% 32%40%)=4 人故答案为: 4点评 : 本题主要考查了扇形统计图,扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系精选学习资料 - - - - - - - - - 名师归纳总结 - -

17、- - - - -第 8 页,共 23 页13 (4 分) (2014?攀枝花)已知x,y 满足方程组,则 xy 的值是1考点 : 解二元一次方程组专题 : 计算题分析 : 将方程组两方程相减即可求出xy 的值解答 :解:,得: x y=1故答案为: 1点评 : 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法14 (4 分) (2014?攀枝花)在 ABC 中,如果 A、 B 满足 |tanA1|+(cosB)2=0,那么 C=75 考点 : 特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方分析 :先根据 ABC 中, tanA=1,cosB=

18、,求出 A 及 B 的度数,进而可得出结论解答 :解: ABC 中, tanA=1,cosB= A=45 , B=60 , C=75 故答案为: 75 点评 : 本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答 此题的关键15 (4 分) (2014?攀枝花)如图是一个几何体的三视图,这个几何体是圆锥,它的侧面积是2 (结果不取近似值) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 23 页考点 : 圆锥的计算;由三视图判断几何体分析 : 俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥

19、,那么侧面积=底面周长 母线长 2解答 : 解:此几何体为圆锥;半径为: r=1,高为: h=,圆锥母线长为:l=2,侧面积 =rl =2 ;故答案为:圆锥,2 点评 : 本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形16 (4 分) (2014?攀枝花)如图,在梯形ABCD 中, ADBC,BE 平分 ABC 交 CD 于 E,且 BECD,CE: ED=2:1如果 BEC 的面积为2,那么四边形ABED 的面积是考点 : 相似三角形的判定与性质;等腰三角形的判定与性质;梯形分析 : 首先

20、延长BA,CD 交于点F,易证得 BEF BEC,则可得DF:FC=1:4,又由ADF BCF, 根据相似三角形的面积比等于相似比的平方,可求得 ADF 的面积,继而求得答案解答 : 解:延长 BA,CD 交于点 F,BE 平分 ABC,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 23 页 EBF=EBC,BECD, BEF=BEC=90 ,在 BEF 和 BEC 中, BEF BEC(ASA) ,EC=EF,SBEF=SBEC=2,SBCF=SBEF+SBEC=4,CE:ED=2:1 DF :FC=1:4,ADBC, ADF B

21、CF,=()2=,SADF = 4=,S四边形 ABCD=SBEF SADF =2=故答案为:点评 : 此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用三、 解答 题(共 66 分)17 (6 分) (2014?攀枝花)计算: ( 1)2014+() 1+()0+精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 23 页考点 : 实数的运算;零指数幂;负整数指数幂分析 : 根据零指数幂、乘方、负整数指数幂、立方根化简四个考点 针对每个 考点 分别进行计算

22、,然后根据实数的运算法则求得计算结果解答 : 解:原式 =1+2+1 1 =3点评 : 本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、立方根等考点 的运算18 (6 分) (2014?攀枝花)解方程:考点 : 解分式方程专题 : 计算题分析 : 观察可得最简公分母是(x+1) (x1) ,方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答 : 解:方程的两边同乘(x+1) (x1) ,得x(x+1)+1=x21,解得 x=2检验:把x=2 代入( x+1) (x1) =30 原方程的解为:x=2点评 : 本题考查了分式方程的

23、解法,(1)解分式方程的基本思想是“ 转化思想 ” ,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根19 (6 分) (2014?攀枝花)如图,在梯形OABC 中, OC AB,OA=CB,点 O 为坐标原点,且 A(2, 3) ,C(0,2) (1)求过点B 的双曲线的解析式;(2)若将等腰梯形OABC 向右平移5 个单位,问平移后的点C 是否落在( 1)中的双曲线上?并简述理由精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 23 页考点 : 等腰梯形的性质; 反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;

24、坐标与图形变化平移分析 : (1)过点 C 作 CDAB 于 D,根据等腰梯形的性质和点A 的坐标求出CD、 BD,然后求出点 B 的坐标,设双曲线的解析式为y= (k0 ) ,然后利用待定系数法求反比例函数解析式 解答 ;(2)根据向右平移横坐标加求出平移后的点C 的坐标,再根据反比例函数图象上点的坐标特征判断解答 : 解: (1)如图,过点C 作 CDAB 于 D,梯形 OABC 中, OCAB,OA=CB, A(2, 3) ,CD=2,BD=3,C(0,2) ,点 B 的坐标为( 2,5) ,设双曲线的解析式为y=(k 0) ,则=5,解得 k=10,双曲线的解析式为y=;(2)平移后的

25、点C 落在( 1)中的双曲线上理由如下:点C(0,2)向右平移5个单位后的坐标为(5, 2) ,当 x=5 时, y=2,平移后的点C 落在( 1)中的双曲线上精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 23 页点评 : 本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征, 坐标与图形变化平移,熟练掌握等腰梯形的性质并求出点B 的坐标是解题的关键20 (8 分) (2014?攀枝花)在一个不透明的口袋里装有分别标有数字3、 1、 0、2 的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均

26、匀(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于 x 的一元二次方程ax22ax+a+3=0 有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率考点 :列表法与树状图法;根的判别式;点的坐标;概率公式专题 :计算题分析 :(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a 的范围,即可求出所求概率;(3)列表得出所有等可能的情

27、况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率解答 :解: (1)根据题意得:抽取的数字为正数的情况有1 个,则 P=;(2)方程 ax22ax+a+3=0,=4a24a(a+3)=12a0 ,即 a0 ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 23 页则方程 ax22ax+a+3=0 有实数根的概率为;(3)列表如下:3 1 0 2 3 ( 1, 3)( 0, 3)(2, 3)1 ( 3, 1)( 0, 1)(2, 1)0 ( 3,0)( 1,0)(2,0)2 ( 3,2)( 1,2)( 0,2)所有等可能

28、的情况有12 种,其中点(x,y)落在第二象限内的情况有2 种,则 P=点评 :此题考查了列表法与树状图法,用到的知识点为:概率 =所求情况数与总情况数之比21 (8 分) (2014?攀枝花)如图,ABC 的边 AB 为 O 的直径, BC 与圆交于点D,D 为BC 的中点,过D 作 DEAC 于 E(1)求证: AB=AC;(2)求证: DE 为 O 的切线;(3)若 AB=13,sinB=,求 CE 的长考点 : 切线的判定;圆周角定理;相似三角形的判定与性质分析 : (1)连接AD,利用直径所对的圆周角是直角和等腰三角形的三线合一可以得到AB=AC;(2)连接OD,利用平行线的判定定理

29、可以得到ODE=DEC=90 ,从而判断DE是圆的切线;(3)根据 AB=13,sinB=,可求得 AD 和 BD,再由 B=C,即可得出DE,根据勾股定理得出CE解答 : (1)证明:连接AD,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 23 页AB 是 O 的直径, ADB=90ADBC,又 D 是 BC 的中点,AB=AC;(2)证明:连接OD,O、D 分别是 AB、BC 的中点,ODAC, ODE=DEC=90 ,ODDE,DE 是 O 的切线;(3)解: AB=13,sinB=,=,AD=12,由勾股定理得BD=5,CD

30、=5, B=C,=,DE=,根据勾股定理得CE=点评 : 本题目考查了切线的判定以及等腰三角形的判定及性质、圆周角定理及切线的性质,涉及的知识点比较多且碎,解题时候应该注意22 (8 分) (2014?攀枝花)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进花城新区建设工程部,因道路建设需要开挖土石方,计划每精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 23 页小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元

31、/台 ?时)挖掘土石方量(单位:m3/台?时)甲型挖掘机100 60 乙型挖掘机120 80 (1)若租用甲、乙两种型号的挖掘机共8 台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850 元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?考点 :一元一次不等式的应用;二元一次方程组的应用分析 :(1)设甲、乙两种型号的挖掘机各需x 台、 y 台等量关系:甲、乙两种型号的挖掘机共 8 台;每小时挖掘土石方540m3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求

32、的租用方案解答 :解: (1)设甲、乙两种型号的挖掘机各需x 台、 y 台依题意得:,解得答:甲、乙两种型号的挖掘机各需5 台、 3 台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机依题意得: 60m+80n=540,化简得: 3m+4n=27m=9n,方程的解为,当 m=5,n=3 时,支付租金:100 5+1203=860 元 850 元,超出限额;当 m=1,n=6 时,支付租金:100 1+1206=820 元,符合要求答:有一种租车方案,即租用1 辆甲型挖掘机和3 辆乙型挖掘机点评 :本题考查了一元一次不等式和二元一次方程组的应用解决问题的关键是读懂题意,依题意列出等式(或不等式)

33、进行求解精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 23 页23 (12 分) (2014?攀枝花)如图,以点P( 1,0)为圆心的圆,交x 轴于 B、 C 两点( B在 C 的左侧),交 y 轴于 A、D 两点(A 在 D 的下方),AD=2,将 ABC 绕点 P 旋转 180 ,得到 MCB(1)求 B、C 两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB 的形状(不必证明) ,求出点 M 的坐标;(3)动直线l 从与 BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l与 CM 交点为 E

34、,点 Q 为 BE 的中点,过点E 作 EGBC 于 G,连接 MQ、QG请问在旋转过程中 MQG 的大小是否变化?若不变,求出MQG 的度数;若变化,请说明理由考点 : 圆的综合题分析 : (1)连接 P A,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C 两点的坐标(2)由于圆P 是中心对称图形,显然射线AP 与圆 P 的交点就是所需画的点M,连接 MB、MC即可;易证四边形ACMB 是矩形;过点M 作 MHBC,垂足为H,易证 MHP AOP,从而求出 MH 、OH 的长,进而得到点M 的坐标(3)易证点 E、M、B、G 在以点 Q 为圆心, QB 为半径的圆上,从而得到MQ

35、G =2MBG易得 OCA=60 ,从而得到 MBG=60 ,进而得到 MQG=120 ,所以 MQG 是定值解答 : 解: (1)连接 PA,如图 1 所示POAD,AO=DOAD=2,OA=点 P 坐标为( 1,0) ,OP=1精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 23 页PA=2BP=CP=2B( 3,0) ,C(1,0) (2)连接 AP,延长 AP 交 P 于点 M,连接 MB、MC如图 2 所示,线段MB、MC 即为所求作四边形 ACMB 是矩形理由如下: MCB 由 ABC 绕点 P 旋转 180 所得,四边形

36、ACMB 是平行四边形BC 是 P 的直径, CAB=90 平行四边形ACMB 是矩形过点 M 作 MHBC,垂足为H,如图 2 所示在 MHP 和 AOP 中, MHP=AOP, HPM = OPA,MP=AP, MHP AOPMH=OA=,PH=PO=1OH=2点 M 的坐标为(2,) (3)在旋转过程中MQG 的大小不变四边形ACMB 是矩形, BMC=90 EGBO, BGE=90 BMC=BGE=90 点 Q 是 BE 的中点,QM=QE=QB=QG点 E、M、B、 G 在以点 Q 为圆心, QB 为半径的圆上,如图3所示 MQG=2 MBG精选学习资料 - - - - - - -

37、- - 名师归纳总结 - - - - - - -第 19 页,共 23 页 COA=90 ,OC=1,OA=,tanOCA= OCA=60 MBC=BCA=60 MQG=120 在旋转过程中MQG 的大小不变,始终等于120 点评 : 本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强证明点E、M、B、G 在以点 Q 为圆心,QB 为半径的圆上是解决第三小题的关键24 (12 分) (2014?攀枝花)如图,抛物线y=ax28ax+12a(a0)与 x 轴交于 A、B 两点(A 在 B 的左侧),与 y 轴交于点

38、C,点 D 的坐标为(6,0) ,且 ACD=90 (1)请直接写出A、B 两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得 P AC 的周长最小?若存在,求出点P 的坐标及周长的最小值;若不存在,说明理由;(4)平行于y 轴的直线m 从点 D 出发沿 x 轴向右平行移动,到点A 停止设直线m 与折线 DCA 的交点为G,与 x轴的交点为H(t,0) 记 ACD 在直线 m 左侧部分的面积为s,求 s关于 t 的函数关系式及自变量t 的取值范围精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 23 页考点 :

39、二次函数综合题分析 :(1)令 y=ax2 8ax+12a=0,解一元二次方程,求出点A、 B 的坐标;(2)由 ACD=90 可知 ACD 为直角三角形,利用勾股定理,列出方程求出a 的值,进而求出抛物线的解析式;(3) PAC 的周长 =AC+P A+PC,AC 为定值,则当PA+PC 取得最小值时,PAC 的周长最小设点C 关于对称轴的对称点为C,连接 AC与对称轴交于点P,由轴对称的性质可知点P 即为所求;(4)直线 m 运动过程中,有两种情形,需要分类讨论并计算,避免漏解解答 :解: (1)抛物线的解析式为:y=ax28ax+12a(a0) ,令 y=0,即 ax28ax+12a=0

40、,解得 x1=2,x2=6,A(2,0) ,B(6,0) (2)抛物线的解析式为:y=ax28ax+12a( a0) ,令 x=0,得 y=12a, C(0,12a) ,OC=12a在 RtCOD 中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;在 RtCOD 中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;在 RtCOD 中,由勾股定理得:DC2+AC2=AD2;即: (144a2+36)+(144a2+4)=82,解得: a=或 a=(舍去),抛物线的解析式为:y=x2x+(3)存在对称轴为直线:x=4精选学习资料 - - -

41、- - - - - - 名师归纳总结 - - - - - - -第 21 页,共 23 页由( 2)知 C(0,) ,则点 C 关于对称轴x=4 的对称点为C(8,) ,连接 AC , 与对称轴交于点P, 则点 P 为所求此时 PAC 周长最小,最小值为AC+AC设直线 AC 的解析式为y=kx+b,则有:,解得,y=x当 x=4 时, y=, P(4,) 过点 C作 CEx 轴于点 E,则 C E=,AE=6,在 RtAC E 中,由勾股定理得:AC=4;在 RtAOC 中,由勾股定理得:AC=4AC+AC=4+4存在满足条件的点P,点 P 坐标为( 4,) , PAC 周长的最小值为4+4

42、(4)当 6 t0 时,如答图41 所示直线 m 平行于 y 轴,即,解得: GH=(6+t)S=SDGH =DH?GH=( 6+t)?(6+t)=t2+2t+6;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 23 页当 0 t2 时,如答图42 所示直线 m 平行于 y 轴,即,解得: GH=t+2S=SCOD +S梯形 OCGH=OD?OC+(GH+OC)? OH= 6 2+(t+2+2)?t=t2+2t+6S=点评 :本题是典型的二次函数压轴题,综合考查二次函数与一次函数的图象与性质、待定系数法、 解一元二次方程、相似、 勾股定理等知识点,难度不大 第(3)考查最值问题,注意利用轴对称的性质;第(4)问是动线型问题,考查分类讨论的数学思想,注意图形面积的计算精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 23 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁