2022年初中数学-分式方程应用题 .pdf

上传人:C****o 文档编号:38613251 上传时间:2022-09-04 格式:PDF 页数:26 大小:448.66KB
返回 下载 相关 举报
2022年初中数学-分式方程应用题 .pdf_第1页
第1页 / 共26页
2022年初中数学-分式方程应用题 .pdf_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年初中数学-分式方程应用题 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学-分式方程应用题 .pdf(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品资料欢迎下载初中数学 -分式方程应用题一解答题(共15 小题)1 (2014?梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2 倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4 天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4 万元,乙队为0.25 万元,要使这次的绿化总费用不超过8 万元,至少应安排甲队工作多少天?2 (2014?济宁)济宁市 “ 五城同创 ” 活动中,一项绿化工程由甲、乙两工程队承担已知甲工程队单独完成这

2、项工作需 120 天,甲工程队单独工作30 天后,乙工程队参与合做,两队又共同工作了36 天完成(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要, 将此项工程分成两部分,甲做其中一部分用了x 天完成, 乙做另一部分用了y 天完成, 其中 x、y 均为正整数,且x46, y52,求甲、乙两队各做了多少天?3 (2014?泰安)某超市用3000 元购进某种干果销售,由于销售状况良好,超市又调拨9000 元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2 倍还多 300 千克, 如果超市按每千克9 元的价格出售,当大部分干果售出后,余下的600 千克按

3、售价的8 折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?4 (2014?日照)为了进一步落实“ 节能减排 ” 措施,冬季供暖来临前,某单位决定对7200 平方米的 “ 外墙保温 ” 工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15 天完成任务问甲队每天完成多少平方米?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 26 页精品资料欢迎下载5 (2014?永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮

4、忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6 天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2 天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对甲队每摘果一天,需支付给甲队1000 元工资,乙队每摘果一天,须支付给乙队1600 元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?6 (2014?牡丹江)学校计划选购甲、乙两种图书作为“ 校园读书节 ” 的奖品已知甲图书的单价是乙图书单价的1.5倍;用 600 元

5、单独购买甲种图书比单独购买乙种图书要少10 本(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40 本,且投入的经费不超过1050 元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?7 ( 2014?自贡) 学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40 分钟完成,现在李老师与工人王师傅共同整理20 分钟后,李老师因事外出,王师傅再单独整理了20 分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30 分钟,要完成整理这批器材,李老师至少要工作多少分钟?8 (2014?哈尔

6、滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20 元,若用400 元购买台灯和用160 元购买手电筒,则购买台灯的个数是购买手电筒个数的一半(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2 倍还多 8 个,且该公司购买台灯和手电筒的总费用不超过670 元,那么荣庆公司最多可购买多少个该品牌台灯?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 26 页精品资料欢迎下载9 (20

7、14?内江)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降今年5 月份 A 款汽车的售价比去年同期每辆降价1 万元, 如果卖出相同数量的A 款汽车, 去年销售额为100 万元, 今年销售额只有90 万元(1)今年 5 月份 A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5 万元, B 款汽车每辆进价为6 万元,公司预计用不多于105 万元且不少于99 万元的资金购进这两款汽车共15 辆, 有几种进货方案?(3)如果 B 款汽车每辆售价为8 万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,

8、返还顾客现金a万元,要使( 2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?10 (2014?漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200 元购进一批杨梅,很快售完;老板又用2500 元购进第二批杨梅,所购件数是第一批的2 倍,但进价比第一批每件多了5 元(1)第一批杨梅每件进价多少元?(2)老板以每件150 元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320 元,剩余的杨梅每件售价至少打几折?(利润=售价进价)11 (2013?三明)兴发服装店老板用4500 元购进一批某款T 恤衫,由于深受顾客喜爱

9、,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9 元(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120 元的价格销售该款式T 恤衫,当第二批T 恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650 元,剩余的T 恤衫每件售价至少要多少元?(利润=售价进价)12 (2013?哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10 天,且甲队单独施工45 天和乙队单独施工30 天的工作量相同(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同

10、工作了3 天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2 倍, 要使甲队总的工作量不少于乙队的工作量的2 倍, 那么甲队至少再单独施工多少天?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 26 页精品资料欢迎下载13 (2013?眉山) 20XX 年 4 月 20 日,雅安发生7.0 级地震,某地需550 顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5 倍,并且加工生产240 顶帐蓬甲工厂比乙工厂少用4 天 求甲、

11、乙两个工厂每天分别可加工生产多少顶帐蓬? 若甲工厂每天的加工生产成本为3 万元, 乙工厂每天的加工生产成本为2.4 万元, 要使这批救灾帐蓬的加工生产总成本不高于60 万元,至少应安排甲工厂加工生产多少天?14 (2013?抚顺) 20XX 年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮某体育用品商店预测某种品牌的运动鞋会畅销,就用4800 元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800 元购进第二批这种运动鞋,所购数量是第一批购进数量的2 倍,但每双鞋进价多用了20 元(1)求该商店第二次购进这种运动鞋多少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总

12、利润率不低于20%,那么每双鞋售价至少是多少元?15 (2013?呼伦贝尔)某工程队(有甲、乙两组)承包一项工程,规定若干天内完成(1)已知甲组单独完成这项工程所需时间比规定时间多30 天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20 天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 26 页精品资料欢迎下载

13、初中数学 -分式方程应用题参考答案与试题解析一解答题(共15 小题)1 (2014?梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2 倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4 天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4 万元,乙队为0.25 万元,要使这次的绿化总费用不超过8 万元,至少应安排甲队工作多少天?考点 :分式方程的应用;一元一次不等式的应用专题 :工程问题分析:(1)设乙工程队每天能完成绿化的面积是x(

14、m2) ,根据在独立完成面积为 400m2区域的绿化时, 甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过 8 万元, 列出不等式, 求解即可解答:解: (1)设乙工程队每天能完成绿化的面积是 x (m2) ,根据题意得:=4,解得: x=50,经检验 x=50 是原方程的解,则甲工程队每天能完成绿化的面积是50 2=100 (m2) ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 26 页精品资料欢迎下载答:甲、乙两工程队每天能完成绿化的面积分别是 100m2、50m2;(2)设至少

15、应安排甲队工作y天,根据题意得:0.4y+ 0.25 8,解得: y 10,答:至少应安排甲队工作 10 天点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验2 (2014?济宁)济宁市 “ 五城同创 ” 活动中,一项绿化工程由甲、乙两工程队承担已知甲工程队单独完成这项工作需 120 天,甲工程队单独工作30 天后,乙工程队参与合做,两队又共同工作了36 天完成(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要, 将此项工程分成两部分,甲做其中一部分用了x 天完成, 乙做另一部分用了y 天完成, 其中 x、y 均为正整数,且x

16、46, y52,求甲、乙两队各做了多少天?考点 :分式方程的应用;一元一次不等式组的应用专题 :工程问题分析:(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程, 求出a 的值即可;(2)首先根据题意列出x 和 y的关系式, 进而求出 x 的取值范围,结合x 和 y都是正整数, 即精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 26 页精品资料欢迎下载可求出 x 和 y 的值解答:解: (1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得 a=80,经检验 a=80 是原方程的解答:乙工程队单独做需要80

17、天完成;(2)甲队做其中一部分用了 x 天,乙队做另一部分用了y天,=1 即 y=80 x,又 x46,y52,解之,得42x46,x、 y 均为正整数,x=45 ,y=50,答: 甲队做了45天, 乙队做了50天点评:本题考查分式方程的应用, 分析题意, 找到合适的等量关系是解决问题的关键 此题涉及的公式: 工作总量=工作效率 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 26 页精品资料欢迎下载工作时间3 (2014?泰安)某超市用3000 元购进某种干果销售,由于销售状况良好,超市又调拨9000 元资金购进该种干果,但这次的进价

18、比第一次的进价提高了20%,购进干果数量是第一次的2 倍还多 300 千克, 如果超市按每千克9 元的价格出售,当大部分干果售出后,余下的600 千克按售价的8 折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?考点 :分式方程的应用专题 :销售问题分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元根据第二次购进干果数量是第一次的2 倍还多 300 千克,列出方程, 解方程即可求解;(2)根据利润 =售价进价, 可求出结果解答:解: (1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%) x 元,由题意

19、,得=2+300,解得 x=5,经检验 x=5 是方程的解答:该种干果的第一次进价是每千克 5 元;(2)+精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 26 页精品资料欢迎下载600 9+600 980%(3000+9000)=(600+1500600) 9+432012000 =1500 9+432012000 =13500+432012000 =5820(元) 答:超市销售这种干果共盈利5820 元点评:本题考查分式方程的应用, 分析题意, 找到合适的等量关系是解决问题的关键4 (2014?日照)为了进一步落实“ 节能减排 ”

20、措施,冬季供暖来临前,某单位决定对7200 平方米的 “ 外墙保温 ” 工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15 天完成任务问甲队每天完成多少平方米?考点 :分式方程的应用专题 :工程问题分析:设甲队每天完成 x 米2,乙队每天完成1.5x米2则依据 “ 乙队单独干比甲队单独干能提前 15 天完成任务” 列出方程解答:解:设甲队每天完成 x 米2,乙队每天完成1.5 x 米2,根据题意得=15,解得 x=160,经检验, x=160,是所列方程的精选学习资料 - - - - - - - -

21、 - 名师归纳总结 - - - - - - -第 9 页,共 26 页精品资料欢迎下载解答:甲队每天完成 160 米2点评:本题考查了分式方程的应用分析题意,找到合适的等量关系是解决问题的关键5 (2014?永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6 天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2 天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对甲队每摘果一天,需支付给甲队1000 元工资,乙

22、队每摘果一天,须支付给乙队1600 元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?考点 :分式方程的应用专题 :应用题分析:(1)设单独由乙队摘果, 需要x 天才能完成,根据题意列出分式方程, 求出分式方程的解得到 x 的值, 检验即可;(2)分别求出三种方案得总工资,比较即可解答:解: (1)设单独由乙队摘果, 需要 x 天才能完成,根据题意得: 2(+)=1,解得: x=3,经检验 x=3 是分式方程的解, 且符合题意,则单独由乙队完成需要 3 天才能完成;(2)方案 1:总精选学习资料 - - - - - - - - - 名师归纳总结 - - -

23、 - - - -第 10 页,共 26 页精品资料欢迎下载工资为 6000元;方案 2:总工资为 5200 元;方案 3:总工资为 4800 元,则方案 3总工资最低, 最低总工资为 4800 元点评:此题考查了分式方程的应用,找出题中的等量关系是解本题的关键6 (2014?牡丹江)学校计划选购甲、乙两种图书作为“ 校园读书节 ” 的奖品已知甲图书的单价是乙图书单价的1.5倍;用 600 元单独购买甲种图书比单独购买乙种图书要少10 本(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40 本,且投入的经费不超过1050 元,要使购买的甲种图书数量不少于乙种图书的数量,则

24、共有几种购买方案?考点 :分式方程的应用;一元一次不等式组的应用专题 :应用题分析:(1)总费用除以单价即为数量,设乙种图书的单价为x 元,则甲种图书的单价为 1.5x 元,根据两种图书数量之间的关系列方程;(2)设购进甲种图书 a 本,则购进乙种图书(40a)本,根据 “ 投入的经费不超过1050元,甲种图书数量不少于乙种图书的数量 ” 列出不等式组解决问题解答:解: (1)设乙种图书的单价为x元,则甲种图书的单价为1.5x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 26 页精品资料欢迎下载元,由题意得=10 解得: x=20

25、则 1.5x=30 ,经检验得出:x=20 是原方程的根,答:甲种图书的单价为 30 元,乙种图书的单价为 20 元;(2)设购进甲种图书 a 本,则购进乙种图书(40a)本,根据题意得解得: 20 a 25,所以 a=20、21、22、23、24、 25,则 40a=20、19、18、17、 16、15 共有 6 种方案点评:此题考查分式方程的运用, 一元一次不等式组的运用, 理解题意, 抓住题目蕴含的数量关系解决问题7 ( 2014?自贡) 学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40 分钟完成,现在李老师与工人王师傅共同整理20 分钟后,李老师因事外出,

26、王师傅再单独整理了20 分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30 分钟,要完成整理这批器材,李老师至少要工作多少分钟?考点 :分式方程的应用;一元一次不等式的应用专题 :应用题分析:(1)设王师傅单独整理这批实验器材需要x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 26 页精品资料欢迎下载分钟, 则王师傅的工作效率为,根据李老师与工人王师傅共同整理20 分钟的工作量 +王师傅再单独整理了 20 分钟的工作量 =1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过3

27、0 分钟,列出不等式求解解答:解: (1)设王师傅单独整理这批实验器材需要 x 分钟, 则王师傅的工作效率为,由题意,得: 20(+)+20 =1,解得: x=80,经检验得: x=80是原方程的根答:王师傅单独整理这批实验器材需要80 分钟(2)设李老师要工作 y 分钟,由题意,得:( 1) 30,解得: y 25答:李老师至少要工作 25分钟点评:本题考查了分式方程的应用及一元一次不等式的应用, 解精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 26 页精品资料欢迎下载答本题的关键是仔细审题, 找到不等关系及等量关系8 (2014

28、?哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20 元,若用400 元购买台灯和用160 元购买手电筒,则购买台灯的个数是购买手电筒个数的一半(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2 倍还多 8 个,且该公司购买台灯和手电筒的总费用不超过670 元,那么荣庆公司最多可购买多少个该品牌台灯?考点 :分式方程的应用;一元一次不等式的应用专题 :应用题分析:(1)设购买该品牌一个手电筒需要 x 元,则购买一个台灯需要( x+2

29、0)元则根据等量关系: 购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为 a,则还需要购买手电筒的个数是 (2a+8a)个,则根据“ 该公司购买台灯和手电筒的总费用不超过670 元” 列出不等式解答:解: (1)设购买该品牌一个手电筒需要x 元,则购买一个台灯需要( x+20)元根据题意得=解得x=5 经检验, x=5 是精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 26 页精品资料欢迎下载原方程的解所以x+20=25答:购买一个台灯需要 25 元,购买一个手电筒需要 5 元;(2)设公司购买台灯的个数为

30、 a,则还需要购买手电筒的个数是 (2a+8a)由题意得25a+5(2a+8a) 670 解得a 21 荣庆公司最多可购买21 个该品牌的台灯点评:本题考查了一元一次不等式和分式方程的应用 解决问题的关键是读懂题意, 找到关键描述语, 进而找到所求的量的等量(不等量)关系9 (2014?内江)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降今年5 月份 A 款汽车的售价比去年同期每辆降价1 万元, 如果卖出相同数量的A 款汽车, 去年销售额为100 万元, 今年销售额只有90 万元(1)今年 5 月份 A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销

31、同品牌的B 款汽车,已知A 款汽车每辆进价为7.5 万元, B 款汽车每辆进价为6 万元,公司预计用不多于105 万元且不少于99 万元的资金购进这两款汽车共15 辆, 有几种进货方案?(3)如果 B 款汽车每辆售价为8 万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使( 2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?考点 :分式方程的应用;一元一次不等式组的应用专题 :应用题分析:(1)求单价,总价明显, 应根据数量来列等量关系 等量关精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15

32、页,共 26 页精品资料欢迎下载系为: 今年的销售数量 =去年的销售数量(2)关系式为:99 A 款汽车总价+B 款汽车总价 105(3)方案获利相同, 说明与所设的未知数无关,让未知数x的系数为0 即可;多进 B 款汽车对公司更有利, 因为 A 款汽车每辆进价为7.5 万元, B 款汽车每辆进价为 6 万元, 所以要多进 B 款解答:解: (1)设今年5 月份 A 款汽车每辆售价m 万元则:,解得: m=9经检验, m=9 是原方程的根且符合题意答:今年 5 月份A 款汽车每辆售价 9 万元;(2)设购进A款汽车 x 辆 则:99 7.5x+6(15x) 105解得: 6 x 10 x 的正

33、整数解为 6,7,8,9,10,共有 5种进货方案;(3)设总获利为 W 元, 购进 A款汽车 x 辆, 则:W=(9 7.5)x+精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 26 页精品资料欢迎下载(86a) (15x)=(a0.5)x+3015a当 a=0.5 时,(2)中所有方案获利相同此时,购买 A 款汽车 6 辆,B 款汽车 9 辆时对公司更有利点评:本题考查分式方程和一元一次不等式组的综合应用, 找到合适的等量关系及不等关系是解决问题的关键10 (2014?漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用12

34、00 元购进一批杨梅,很快售完;老板又用2500 元购进第二批杨梅,所购件数是第一批的2 倍,但进价比第一批每件多了5 元(1)第一批杨梅每件进价多少元?(2)老板以每件150 元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320 元,剩余的杨梅每件售价至少打几折?(利润=售价进价)考点 :分式方程的应用;一元一次不等式的应用专题 :销售问题分析:(1)设第一批杨梅每件进价是 x 元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的 2 倍;(2)设剩余的杨梅每件售价y元,由利润 =售价进价, 根据第二批的销售利润不

35、低于320元,可列不等式求解解答:解: (1)设第一批杨梅每件进价 x 元,则精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 26 页精品资料欢迎下载 2=,解得x=120经检验, x=120是原方程的根答:第一批杨梅每件进价为120元;(2)设剩余的杨梅每件售价打 y 折则: 150 80%+ 150 ( 180%) 0.1y2500 320,解得y 7答:剩余的杨梅每件售价至少打 7 折点评:本题考查分式方程、 一元一次不等式的应用,关键是根据数量作为等量关系列出方程, 根据利润作为不等关系列出不等式求解11 (2013?三明)兴

36、发服装店老板用4500 元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9 元(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120 元的价格销售该款式T 恤衫,当第二批T 恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650 元,剩余的T 恤衫每件售价至少要多少元?(利润=售价进价)考点 :分式方程的应用;一元一次不等式的应用分析:(1) 设第一批 T恤衫每件进价是 x 元,则第二批每件进价是(x+9)元,再精选学习资料 - - - - - - - - - 名师归纳

37、总结 - - - - - - -第 18 页,共 26 页精品资料欢迎下载根据等量关系:第二批进的件数=第一批进的件数可得方程;(2) 设剩余的 T恤衫每件售价y元,由利润 =售价进价, 根据第二批的销售利润不低于650元,可列不等式求解解答:解: (1)设第一批 T 恤衫每件进价是 x 元,由题意,得=,解得 x=90,经检验 x=90 是分式方程的解,符合题意答:第一批 T 恤衫每件的进价是 90 元;(2) 设剩余的 T恤衫每件售价y元由( 1)知,第二批购进=50(件) 由题意,得120 50 +y 50 4950 650,解得 y 80答:剩余的 T 恤衫每件售价至少要 80 元点评

38、:本题考查分式方程、 一元一次不等式的应用,关键是根据数量作为等量关系列出方程, 根据利润作为不精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 26 页精品资料欢迎下载等关系列出不等式求解12 (2013?哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10 天,且甲队单独施工45 天和乙队单独施工30 天的工作量相同(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3 天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的

39、2 倍, 要使甲队总的工作量不少于乙队的工作量的2 倍, 那么甲队至少再单独施工多少天?考点 :分式方程的应用;一元一次不等式的应用分析:(1)设乙队单独完成此项任务需要 x 天,则甲队单独完成此项任务需要(x+10 )天,根据甲队单独施工 45 天和乙队单独施工30 天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的 2倍建立不等式求出其解即可解答:解: (1)设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要( x+10)天,由题意,得,解得: x=20经检验, x=20是原方程的解,x+10=30(天)答:甲队单独完成此项任务

40、需要 30 天,乙队单独完成此项精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 26 页精品资料欢迎下载任务需要 20 天;(2)设甲队再单独施工a天,由题意,得,解得: a 3答:甲队至少再单独施工3 天点评:本题是一道工程问题的运用,考查了工作时间 工作效率 =工作总量的运用,列分式方程解实际问题的运用, 分式方程的解法的运用,解答时验根是学生容易忽略的地方13 (2013?眉山) 20XX 年 4 月 20 日,雅安发生7.0 级地震,某地需550 顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产已知甲工厂每天的加工

41、生产能力是乙工厂每天加工生产能力的1.5 倍,并且加工生产240 顶帐蓬甲工厂比乙工厂少用4 天 求甲、乙两个工厂每天分别可加工生产多少顶帐蓬? 若甲工厂每天的加工生产成本为3 万元, 乙工厂每天的加工生产成本为2.4 万元, 要使这批救灾帐蓬的加工生产总成本不高于60 万元,至少应安排甲工厂加工生产多少天?考点 :分式方程的应用;一元一次不等式的应用专题 :压轴题分析: 先设乙工厂每天可加工生产 x 顶帐蓬, 则甲工厂每天可加工生产1.5x顶帐蓬, 根据加工生产 240顶帐蓬甲工厂比乙工厂少用 4 天列出方程,求出x的值, 再进行检验即可求出答案; 设甲工厂加精选学习资料 - - - - -

42、 - - - - 名师归纳总结 - - - - - - -第 21 页,共 26 页精品资料欢迎下载工生产 y 天,根据加工生产总成本不高于60万元, 列出不等式,求出不等式的解集即可解答:解: 设乙工厂每天可加工生产 x 顶帐蓬, 则甲工厂每天可加工生产1.5x顶帐蓬, 根据题意得:=4,解得: x=20,经检验 x=20 是原方程的解,则甲工厂每天可加工生产1.5 20=30 (顶) ,答:甲、乙两个工厂每天分别可加工生产30顶和 20顶帐蓬; 设甲工厂加工生产 y 天,根据题意得:3y+2.4 60,解得: y 10,则至少应安排甲工厂加工生产 10 天答:至少应安排甲工厂加工生产 10

43、 天点评:此题考查了分式方程的应用和一元一次不等式的应用, 读懂题意, 找出题目中的数量关系,列出方程和不等式, 注意分式方程要检验精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 26 页精品资料欢迎下载14 (2013?抚顺) 20XX 年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮某体育用品商店预测某种品牌的运动鞋会畅销,就用4800 元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800 元购进第二批这种运动鞋,所购数量是第一批购进数量的2 倍,但每双鞋进价多用了20 元(1)求该商店第二次购进这种运动鞋多

44、少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?考点 :分式方程的应用;一元一次不等式的应用分析:(1)设该商场第一次购进这种运动鞋x 双,则第二次购进数量为 2x 双,根据关键语句“ 每双进价多了20 元” 可得等量关系: 第一次购进运动鞋的单价+20=第二次购进运动鞋的单价, 根据等量关系列出方程,求出方程的解,再进行检验即可得出答案;(2)设每双售价是 y 元,根据数量关系:(总售价总进价) 总进价 20%,列出不等式, 解出不等式的解即可解答:解( 1)设该商场第一次购进这种运动鞋x双,由题意得:+20=,解得: x=30 经检

45、验, x=30是原方程的解,符合题意,则第二次购进精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 26 页精品资料欢迎下载这种运动鞋是30 2=60(双) ;答:该商场第二次购进这种运动鞋 60 双(2)设每双售价是 y 元,由题意得: 100% 20%,解这个不等式,得 y 208,答:每双运动鞋的售价至少是208 元点评:本题考查分式方程的应用和一元一次不等式的应用, 读懂题意, 找到关键描述语, 找到合适的等量关系或不等关系是解决问题的关键用到的公式是:利润率= 100%15 (2013?呼伦贝尔)某工程队(有甲、乙两组)承包一

46、项工程,规定若干天内完成(1)已知甲组单独完成这项工程所需时间比规定时间多30 天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20 天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由考点 :分式方程的应用分析:(1)设规定的时间是 x 天,则甲单独完成需要( x+30)天,乙单独完成需要( x+12)天,根据工程问题的数量关系建立方程求出其精选学习资料 - - - - - - - - - 名师归纳总结 - - -

47、- - - -第 24 页,共 26 页精品资料欢迎下载解即可;(2)分别计算出剩下的工作量由甲、 乙单独完成需要的时间,然后进行比较就可以得出结论解答:解: (1)设规定的时间是x 天,则甲单独完成需要(x+30 ) 天,乙单独完成需要( x+12)天,由题意,得,解得: x=24经检验, x=24是原方程的根,答:规定的时间是 24 天;(2)由题意,得规定时间是24 天,甲单独完成需要 24+30=54天,乙单独完成需要 24+12=36天留下甲完成需要的时间是:()+ ( 1)=18+9=2724 不能再规定时间完成任务;留下乙完成需要的时间是:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 25 页,共 26 页精品资料欢迎下载()+ ( 1)=18+6=24能在规定时间完成任务留下乙组较好点评:本题考查了列分式方程解实际问题的运用,分式方程的解法的运用, 工程问题的数量关系工作质量 =工作效率 工作时间的运用, 解答时根据工作问题的数量关系建立方程是关键,注意检验不要忘记精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 26 页,共 26 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁