《概率论与数理统计浙大四版习题答案第2-8章(42页).doc》由会员分享,可在线阅读,更多相关《概率论与数理统计浙大四版习题答案第2-8章(42页).doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-概率论与数理统计浙大四版习题答案第2-8章-第 56 页第二章 随机变量及其分布1.一 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律解:X可以取值3,4,5,分布律为也可列为下表X: 3, 4,5P:3.三 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。解:任取三只,其中新含次品个数X可能为0,1,2个。Px12O再列为下表X: 0, 1, 2P: 4.四 进行重复独立实验,设每次成功的概率为p,失败的概率为q =1p
2、(0pY)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)=P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)9.十 有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成
3、功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)解:(1)P (一次成功)=(2)P (连续试验10次,成功3次)= 。此概率太小,按实际推断原理,就认为他确有区分能力。九 有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第2次检验的标准被接受的概率(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概
4、率解:X表示10件中次品的个数,Y表示5件中次品的个数, 由于产品总数很大,故XB(10,0.1),YB(5,0.1)(近似服从)(1)P X=0=0.9100.349(2)P X2=P X=2+ P X=1=(3)P Y=0=0.9 50.590(4)P 0X2,Y=0(0X2与 Y=2独立) = P 0X2P Y=0 =0.5810.5900.343(5)P X=0+ P 010)=P (X 11)=0.002840(查表计算)十二 (2)每分钟呼唤次数大于3的概率。十六 以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是求下述概率:(1)P至多3分钟;(2
5、)P 至少4分钟;(3)P3分钟至4分钟之间;(4)P至多3分钟或至少4分钟;(5)P恰好2.5分钟解:(1)P至多3分钟= P X3 = (2)P 至少4分钟 P (X 4) = (3)P3分钟至4分钟之间= P 3X4= (4)P至多3分钟或至少4分钟= P至多3分钟+P至少4分钟 (5)P恰好2.5分钟= P (X=2.5)=018.十七 设随机变量X的分布函数为,求(1)P (X2), P 0X3, P (2X);(2)求概率密度fX (x).解:(1)P (X2)=FX (2)= ln2, P (0X3)= FX (3)FX (0)=1,(2)20.十八(2)设随机变量的概率密度为(
6、1)(2)求X的分布函数F (x),并作出(2)中的f (x)与F (x)的图形。解:当1x1时:当1x时:故分布函数为:解:(2)故分布函数为(2)中的f (x)与F (x)的图形如下f (x)x0F (x)21x01222.二十 某种型号的电子的寿命X(以小时计)具有以下的概率密度:现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少?解:一个电子管寿命大于1500小时的概率为令Y表示“任取5只此种电子管中寿命大于1500小时的个数”。则,23.二十一 设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为:某顾客在
7、窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律。并求P(Y1)。解:该顾客“一次等待服务未成而离去”的概率为因此 24.二十二 设K在(0,5)上服从均匀分布,求方程有实根的概率 K的分布密度为:要方程有根,就是要K满足(4K)244 (K+2)0。解不等式,得K2时,方程有实根。25.二十三 设XN(3.22)(1)求P (2X5),P (4)2,P (X3)若XN(,2),则P (X)=P (2X5) =(1)(0.5) =0.84130.3085=0.5328P (42)=1P (|X|2)= 1P (2 P3)=
8、1P (X3)=1=10.5=0.5(2)决定C使得P (X C )=P (XC)P (X C )=1P (XC )= P (XC)得P (XC )=0.5又P (XC )= C =326.二十四 某地区18岁的女青年的血压(收缩区,以mm-Hg计)服从在该地区任选一18岁女青年,测量她的血压X。求(1)P (X105),P (100x) 0.05.解:27.二十五 由某机器生产的螺栓长度(cm)服从参数为=10.05,=0.06的正态分布。规定长度在范围10.050.12内为合格品,求一螺栓为不合格的概率是多少?设螺栓长度为XPX不属于(10.050.12, 10.05+0.12) =1P
9、(10.050.12X10.05+0.12) =1 =1(2)(2) =10.97720.0228 =0.045628.二十六 一工厂生产的电子管的寿命X(以小时计)服从参数为=160,(未知)的正态分布,若要求P (120X200=0.80,允许最大为多少? P (120X200)=又对标准正态分布有(x)=1(x) 上式变为 解出 再查表,得30.二十七 设随机变量X的分布律为: X:2, 1, 0,1,3P:, , , ,求Y=X 2的分布律 Y=X 2:(2)2 (1)2(0)2(1)2(3)2 P: 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y的分布律为: Y: 0 1
10、4 9 P: 31.二十八 设随机变量X在(0,1)上服从均匀分布(1)求Y=eX的分布密度 X的分布密度为:Y=g (X) =eX是单调增函数又X=h (Y)=lnY,反函数存在且 = ming (0), g (1)=min(1, e)=1 maxg (0), g (1)=max(1, e)= e Y的分布密度为:(2)求Y=2lnX的概率密度。 Y= g (X)=2lnX是单调减函数又 反函数存在。且 = ming (0), g (1)=min(+, 0 )=0 =maxg (0), g (1)=max(+, 0 )= + Y的分布密度为:32.二十九 设XN(0,1)(1)求Y=eX的概
11、率密度 X的概率密度是 Y= g (X)=eX是单调增函数又X= h (Y ) = lnY 反函数存在且 = ming (), g (+)=min(0, +)=0 = maxg (), g (+)= max(0, +)= + Y的分布密度为:(2)求Y=2X2+1的概率密度。在这里,Y=2X2+1在(+,)不是单调函数,没有一般的结论可用。设Y的分布函数是FY(y),则FY ( y)=P (Yy)=P (2X2+1y)当y1时,( y)= FY ( y) =(3)求Y=| X |的概率密度。Y的分布函数为 FY ( y)=P (Yy )=P ( | X |y)当y0时:( y)= FY ( y
12、) =33.三十 (1)设随机变量X的概率密度为f (x),求Y = X 3的概率密度。Y=g (X )= X 3是X单调增函数,又X=h (Y ) =,反函数存在,且 = ming (), g (+)=min(0, +)= = maxg (), g (+)= max(0, +)= + Y的分布密度为: ( y)= f h ( h )| h ( y)| = (2)设随机变量X服从参数为1的指数分布,求Y=X 2的概率密度。xOy=x2y法一: X的分布密度为: Y=x2是非单调函数当 x0时 y=x2 反函数是当 x0时 y=x2 & Y fY (y) = 法二: Y fY (y) =34.三
13、十一 设X的概率密度为求Y=sin X的概率密度。FY ( y)=P (Yy) = P (sinXy)当y0时:FY ( y)=0当0y1时:FY ( y) = P (sinXy) = P (0Xarc sin y或arc sin yX)当1y时:FY ( y)=1 Y的概率密度( y )为:y0时,( y )= FY ( y) = (0 ) = 00y1时,( y )= FY ( y) =1y时,( y )= FY ( y) = = 036.三十三 某物体的温度T (oF )是一个随机变量,且有TN(98.6,2),试求()的概率密度。已知法一: T的概率密度为 又 是单调增函数。 反函数存
14、在。 且 = ming (), g (+)=min(, +)= = maxg (), g (+)= max(, +)= + 的概率密度()为法二:根据定理:若XN(1, 1),则Y=aX+bN (a1+b, a2 2 )由于TN(98.6, 2)故 故的概率密度为:第三章 多维随机变量及其分布1.一 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。考虑两种试验:(1)放回抽样,(2)不放回抽样。我们定义随机变量X,Y如下:试分别就(1)(2)两种情况,写出X和Y的联合分布律。解:(1)放回抽样情况由于每次取物是独立的。由独立性定义知。P (X=i, Y=j)=P (X
15、=i)P (Y=j)P (X=0, Y=0 )=P (X=0, Y=1 )=P (X=1, Y=0 )=P (X=1, Y=1 )=或写成XY0101(2)不放回抽样的情况P X=0, Y=0 =P X=0, Y=1 =P X=1, Y=0 =P X=1, Y=1 =或写成XY01013.二 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到白球的只数,求X,Y的联合分布律。XY01230001020解:(X,Y)的可能取值为(i, j),i=0,1,2,3, j=0,12,i + j2,联合分布律为P X=0, Y=2 =P X=1, Y=1 =P
16、 X=1, Y=2 =P X=2, Y=0 =P X=2, Y=1 =P X=2, Y=2 =P X=3, Y=0 =P X=3, Y=1 =P X=3, Y=2 =05.三 设随机变量(X,Y)概率密度为(1)确定常数k。(2)求P X1, Y3(3)求P (X1.5(4)求P (X+Y4分析:利用P (X, Y)G=再化为累次积分,其中解:(1),(2)(3)y(4)6(1)求第1题中的随机变量(X、Y )的边缘分布律。 (2)求第2题中的随机变量(X、Y )的边缘分布律。2解:(1) 放回抽样(第1题)XY0x+y=4110xo1边缘分布律为X01Y01PiPj 不放回抽样(第1题)XY
17、0101边缘分布为X01Y01PiPj(2)(X,Y )的联合分布律如下XY0123000300解: X的边缘分布律 Y的边缘分布律X0123 Y13Pi Pj7.五 设二维随机变量(X,Y )的概率密度为解:8.六 设二维随机变量(X,Y)的概率密度为x=yy求边缘概率密度。xo解:9.七 设二维随机变量(X,Y)的概率密度为(1)试确定常数c。(2)求边缘概率密度。解: l=yo y=x2x15. 第1题中的随机变量X和Y是否相互独立。解:放回抽样的情况P X=0, Y=0 = P X=0P Y=0 =P X=0, Y=1 = P X=0P Y=1=P X=1, Y=0 = P X=1P
18、Y=0=P X=1, Y=1 = P X=1P Y=1=在放回抽样的情况下,X和Y是独立的不放回抽样的情况:P X=0, Y=0 =P X=0=P X=0= P X=0, Y=0 + P Y=0, X=1 =P X=0P Y=0 =P X=0, Y=0 P X=0P Y=0 X和Y不独立16.十四 设X,Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布。Y的概率密度为(1)求X和Y的联合密度。(2)设含有a的二次方程为a2+2Xa+Y=0,试求有实根的概率。解:(1)X的概率密度为y=x2Y的概率密度为1xDyo且知X, Y相互独立,于是(X,Y)的联合密度为(2)由于a有实跟根,从而
19、判别式 即: 记19.十八 设某种商品一周的需要量是一个随机变量,其概率密度为并设各周的需要量是相互独立的,试求(1)两周(2)三周的需要量的概率密度。解:(1)设第一周需要量为X,它是随机变量 设第二周需要量为Y,它是随机变量且为同分布,其分布密度为Z=X+Y表示两周需要的商品量,由X和Y的独立性可知:z0 当z0时,由和的概率公式知(2)设z表示前两周需要量,其概率密度为 设表示第三周需要量,其概率密度为:z与相互独立= z +表示前三周需要量则:0,当u0时所以的概率密度为22.二十二 设某种型号的电子管的寿命(以小时计)近似地服从N(160,20)分布。随机地选取4只求其中没有一只寿命
20、小于180小时的概率。解:设X1,X2,X3,X4为4只电子管的寿命,它们相互独立,同分布,其概率密度为:设N=minX1,X2,X3,X 4 P N180=P X1180, X2180, X3180, X4180 =P X1804=1pX1804= (0.1587)4=0.0006327.二十八 设随机变量(X,Y)的分布律为XY012345012300.010.010.010.010.020.030.020.030.040.050.040.050.050.050.060.070.060.050.060.090.080.060.05(1)求P X=2|Y=2,P Y=3| X=0(2)求V=
21、max (X, Y )的分布律(3)求U = min (X, Y )的分布律解:(1)由条件概率公式P X=2|Y=2=同理P Y=3|X=0=(2)变量V=maxX, Y 显然V是一随机变量,其取值为 V:0 1 2 3 4 5P V=0=P X=0 Y=0=0P V=1=P X=1,Y=0+ P X=1,Y=1+ P X=0,Y=1 =0.01+0.02+0.01=0.04P V=2=P X=2,Y=0+ P X=2,Y=1+ P X=2,Y=2 +P Y=2, X=0+ P Y=2, X=1 =0.03+0.04+0.05+0.01+0.03=0.16P V=3=P X=3,Y=0+ P
22、 X=3,Y=1+ P X=3,Y=2+ P X=3,Y=3 +P Y=3, X=0+ P Y=3, X=1+ P Y=3, X=2 =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28P V=4=P X=4,Y=0+ P X=4,Y=1+ P X=4,Y=2+ P X=4,Y=3 =0.07+0.06+0.05+0.06=0.24P V=5=P X=5,Y=0+ + P X=5,Y=3 =0.09+0.08+0.06+0.05=0.28(3)显然U的取值为0,1,2,3 P U=0=P X=0,Y=0+ P X=0,Y=3+ P Y=0,X=1+ + P Y=0,
23、X=5=0.28同理 P U=1=0.30 P U=2=0.25 P U=3=0.17或缩写成表格形式(2)V012345Pk00.040.160.280.240.28(3)U0123Pk0.280.300.250.17(4)W=V+U显然W的取值为0,1,8 PW=0=PV=0 U=0=0 PW=1=PV=0, U=1+PV=1U=0 V=maxX,Y=0又U=minX,Y=1不可能上式中的PV=0,U=1=0,又 PV=1 U=0=PX=1 Y=0+PX=0 Y=1=0.2故 PW=1=PV=0, U=1+PV=1,U=0=0.2 PW=2=PV+U=2= PV=2, U=0+ PV=1,
24、U=1 = PX=2 Y=0+ PX=0 Y=2+PX=1 Y=1 =0.03+0.01+0.02=0.06 PW=3=PV+U=3= PV=3, U=0+ PV=2,U=1 = PX=3 Y=0+ PX=0,Y=3+PX=2,Y=1 + PX=1,Y=2 =0.05+0.01+0.04+0.03=0.13 PW=4= PV=4, U=0+ PV=3,U=1+PV=2,U=2 =PX=4 Y=0+ PX=3,Y=1+PX=1,Y=3 + PX=2,Y=2 =0.19 PW=5= PV+U=5=PV=5, U=0+ PV=5,U=1+PV=3,U=2 =PX=5 Y=0+ PX=5,Y=1+PX
25、=3,Y=2+ PX=2,Y=3 =0.24 PW=6= PV+U=6=PV=5, U=1+ PV=4,U=2+PV=3,U=3 =PX=5,Y=1+ PX=4,Y=2+PX=3,Y=3 =0.19 PW=7= PV+U=7=PV=5, U=2+ PV=4,U=3 =PV=5,U=2 +PX=4,Y=3=0.6+0.6=0.12 PW=8= PV+U=8=PV=5, U=3+ PX=5,Y=3=0.05或列表为W012345678P00.020.060.130.190.240.190.120.05二十一 设随机变量(X,Y)的概率密度为(1)试确定常数b;(2)求边缘概率密度fX (x),fY
26、 (y)(3)求函数U=max (X, Y)的分布函数。解:(1) (2)(3)Fu ()=P U u=P )=P X u, Y u =F (u, u)= u1)=1P (1)= 1P (=0)+ P (=1)10.7361=0.2639.因此X表示一天调整设备的次数时XB(4, 0.2639). P (X=0)=0.263900.73614 =0.2936.P (X=1)=0.263910.73613=0.4210, P (X=2)= 0.263920.73612=0.2264.P (X=3)=0.263930.7361=0.0541, P (X=4)= 0.26390.73610=0.00
27、49.从而E (X)=np=40.2639=1.05563.三 有3只球,4只盒子,盒子的编号为1,2,3,4,将球逐个独立地,随机地放入4只盒子中去。设X为在其中至少有一只球的盒子的最小号码(例如X=3表示第1号,第2号盒子是空的,第3号盒子至少有一只球),求E (X)。 事件 X=1=一只球装入一号盒,两只球装入非一号盒+两只球装入一号盒,一只球装入非一号盒+三只球均装入一号盒(右边三个事件两两互斥)事件“X=2”=“一只球装入二号盒,两只球装入三号或四号盒”+“两只球装二号盒,一只球装入三或四号盒”+“三只球装入二号盒”同理:故5.五 设在某一规定的时间间段里,其电气设备用于最大负荷的时
28、间X(以分计)是一个连续型随机变量。其概率密度为求E (X)解:6.六 设随机变量X的分布为X202Pk0.40.30.3求 E (X),E (3X2+5)解:E (X)= (2)0.4+00.3+20.3=0.2E (X2)= (2)20.4+020.3+220.3=2.8E (3X2+5) = 3E (X2)+ E (5)= 8.4+5=13.47.七 设随机变量X的概率密度为求(1)Y=2X(2)Y=e2x的数学期望。解:(1) (2)8.八 设(X,Y)的分布律为XY1231010.20.10.10.100.100.30.1(1) 求E (X),E (Y )。(2) 设Z=Y/X,求E
29、 (Z )。(3) 设Z= (XY )2,求E (Z)。解:(1)由X,Y的分布律易得边缘分布为XY12310.20.100.300.100.30.410.10.10.10.30.40.20.41E(X)=10.4+20.2+30.4=0.4+0.4+1.2=2.E(Y)= (1)0.3+00.4 +10.3=0.Z=Y/X11/21/301/31/21pk0.20.100.40.10.10.1(2) E (Z )= (1)0.2+(0.5)0.1+(1/3)0+00.4+1/30.1+0.50.1+10.1 = (1/4)+1/30+1/20+1/10=(15/60)+11/60=1/15.
30、Z (XY)20(1-1)21(1- 0)2或(2-1)24(2- 0)2或(1- (-1)2或(3-1)29(3- 0)2或(2-(-1)216(3-(-1)2pk0.10.20.30.40(3) E (Z )=00.1+10.2+40.3+90.4+160=0.2+1.2+3.6=510.十 一工厂生产的某种设备的寿命X(以年计)服从指数分布,概率密度为工厂规定出售的设备若在一年内损坏,可予以调换。若工厂出售一台设备可赢利100元,调换一台设备厂方需花费300元。试求厂方出售一台设备净赢利的数学期望。解:一台设备在一年内损坏的概率为故设Y表示出售一台设备的净赢利则故 11.十一 某车间生产
31、的圆盘直径在区间(a, b)服从均匀分布。试求圆盘面积的数学期望。解:设X为圆盘的直径,则其概率密度为用Y表示圆盘的面积,则12.十三 设随机变量X1,X2的概率密度分别为求(1)E (X1+X2),E (2X13);(2)又设X1,X2相互独立,求E (X1X2)解:(1) (2) (3)13.十四 将n只球(1n号)随机地放进n只盒子(1n号)中去,一只盒子装一只球。将一只球装入与球同号的盒子中,称为一个配对,记X为配对的个数,求E(X )解:引进随机变量 i=1, 2, n 则球盒对号的总配对数为Xi的分布列为Xi:10P:i=1, 2 n i=1, 2 n14.十五 共有n把看上去样子
32、相同的钥匙,其中只有一把能打开门上的锁,用它们去试开门上的锁。设抽取钥匙是相互独立的,等可能性的。若每把钥匙经试开一次后除去,试用下面两种方法求试开次数X的数学期望。(1)写出X的分布律,(2)不写出X的分布律。解:(1)X123nP(2)设一把一把钥匙的试开,直到把钥匙用完。设 i=1, 2 n则试开到能开门所须试开次数为Xii0PE (Xi)=i=1, 2n15. (1)设随机变量X的数学期望为E (X),方差为D (X)0,引入新的随机变量(X*称为标准化的随机变量):验证E (X* )=0,D (X* )=1(2)已知随机变量X的概率密度。求X*的概率密度。解:(1) D (X* )= E X*E (X )* 2= E (X*2 )= (2)16.十六 设X为随机变量,C是常数,证明D (X )E (XC )2 ,对于CE (X ),(由于D (X ) = E XE (X )2 ,上式表明E (XC )2 当C=E (X )时取到