《概率论与数理统计浙大四版习题答案第二章(共15页).doc》由会员分享,可在线阅读,更多相关《概率论与数理统计浙大四版习题答案第二章(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第二章 随机变量及其分布1.一 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律解:X可以取值3,4,5,分布律为 也可列为下表X: 3, 4,5P:3.三 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。解:任取三只,其中新含次品个数X可能为0,1,2个。Px12O再列为下表X: 0, 1, 2P: 4.四 进行重复独立实验,设每次成功的概率为p,失败的概率为q =1p(0<p<1)(1
2、)将实验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。(此时称X服从以p为参数的几何分布。)(2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。(此时称Y服从以r, p为参数的巴斯卡分布。)(3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取偶数的概率。解:(1)P (X=k)=qk1pk=1,2, (2)Y=r+n=最后一次实验前r+n1次有n次失败,且最后一次成功其中 q=1p,或记r+n=k,则 PY=k= (3)P (X=k) = (0.55)k10.45k=1,2P (X取偶数)=6.六 一大楼
3、装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?(2)至少有3个设备被使用的概率是多少?(3)至多有3个设备被使用的概率是多少?(4)至少有一个设备被使用的概率是多少?五 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。(1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的
4、次数,如户主所说是确实的,试求Y的分布律。(3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。解:(1)X的可能取值为1,2,3,n,P X=n=P 前n1次飞向了另2扇窗子,第n次飞了出去 =, n=1,2,(2)Y的可能取值为1,2,3 P Y=1=P 第1次飞了出去= P Y=2=P 第1次飞向 另2扇窗子中的一扇,第2次飞了出去 = P Y=3=P 第1,2次飞向了另2扇窗子,第3次飞了出去 = 同上, 故8.八 甲、乙二人投篮,投中的概率各为0.6, 0.7,令各投三次。求(1)二人投中次数相等的概率。记X表甲三次投篮中投中的次数Y表乙三次投篮中投中的次数由于甲、乙每次投篮独立
5、,且彼此投篮也独立。P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3) = P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3) = (0.4)3× (0.3)3+ (2)甲比乙投中次数多的概率。 P (X>Y)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)=P (X=1) P (Y=0) + P (X=2, Y=0)+ P
6、(X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)= 9.十 有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)解:(1)P (一次成功)=(2)P (连续试验10次,成功3次)= 。此概率太小,按实际推断原理,就认为他确有区分能力。九 有一大批产品,其验收方案如下,先做第一次检验:从中任取10
7、件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第2次检验的标准被接受的概率(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:X表示10件中次品的个数,Y表示5件中次品的个数, 由于产品总数很大,故XB(10,0.1),YB(5,0.1)(近似服从)(1)P X=0=0.9100.349(2)P X2=P X=2+ P X=1=(3)P Y=0=0.9 50.590(4)P
8、 0<X2,Y=0(0<X2与 Y=2独立) = P 0<X2P Y=0 =0.581×0.5900.343(5)P X=0+ P 0<X2,Y=0 0.349+0.343=0.69212.十三 电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼唤的概率法一:(直接计算)法二:P ( X= 8 )= P (X 8)P (X 9)(查= 4泊松分布表)。 = 0.0.=0.(2)每分钟的呼唤次数大于10的概率。 P (X>10)=P (X 11)=0.(查表计算)十二 (2)每分钟呼唤次数大于3的概率。十六 以X表示某商店从早晨开始
9、营业起直到第一顾客到达的等待时间(以分计),X的分布函数是求下述概率:(1)P至多3分钟;(2)P 至少4分钟;(3)P3分钟至4分钟之间;(4)P至多3分钟或至少4分钟;(5)P恰好2.5分钟解:(1)P至多3分钟= P X3 = (2)P 至少4分钟 P (X 4) = (3)P3分钟至4分钟之间= P 3<X4= (4)P至多3分钟或至少4分钟= P至多3分钟+P至少4分钟 = (5)P恰好2.5分钟= P (X=2.5)=018.十七 设随机变量X的分布函数为,求(1)P (X<2), P 0<X3, P (2<X<);(2)求概率密度fX (x).解:(
10、1)P (X2)=FX (2)= ln2, P (0<X3)= FX (3)FX (0)=1,(2)20.十八(2)设随机变量的概率密度为(1)(2)求X的分布函数F (x),并作出(2)中的f (x)与F (x)的图形。解:当1x1时:当1<x时:故分布函数为:解:(2)故分布函数为(2)中的f (x)与F (x)的图形如下f (x)x0F (x)21x01222.二十 某种型号的电子的寿命X(以小时计)具有以下的概率密度: 现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少?解:一个电子管寿命大于1500小时的概率为令Y
11、表示“任取5只此种电子管中寿命大于1500小时的个数”。则,23.二十一 设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为:某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律。并求P(Y1)。解:该顾客“一次等待服务未成而离去”的概率为因此 24.二十二 设K在(0,5)上服从均匀分布,求方程有实根的概率 K的分布密度为:要方程有根,就是要K满足(4K)24×4× (K+2)0。解不等式,得K2时,方程有实根。25.二十三 设XN(3.22)(1)求P (2<X5),
12、P (4)<X10),P|X|>2,P (X>3)若XN(,2),则P (<X)=P (2<X5) =(1)(0.5) =0.84130.3085=0.5328P (4<X10) =(3.5)(3.5) =0.99980.0002=0.9996P (|X|>2)=1P (|X|<2)= 1P (2< P<2 ) = =1(0.5) +(2.5) =10.3085+0.0062=0.6977P (X>3)=1P (X3)=1=10.5=0.5(2)决定C使得P (X > C )=P (XC)P (X > C )=1P
13、(XC )= P (XC)得P (XC )=0.5又P (XC )= C =326.二十四 某地区18岁的女青年的血压(收缩区,以mm-Hg计)服从在该地区任选一18岁女青年,测量她的血压X。求(1)P (X105),P (100<X 120). (2)确定最小的X使P (X>x) 0.05.解:27.二十五 由某机器生产的螺栓长度(cm)服从参数为=10.05,=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少?设螺栓长度为XPX不属于(10.050.12, 10.05+0.12) =1P (10.050.12<X&l
14、t;10.05+0.12) =1 =1(2)(2) =10.97720.0228 =0.045628.二十六 一工厂生产的电子管的寿命X(以小时计)服从参数为=160,(未知)的正态分布,若要求P (120X200=0.80,允许最大为多少? P (120X200)=又对标准正态分布有(x)=1(x) 上式变为 解出 再查表,得30.二十七 设随机变量X的分布律为: X:2, 1, 0,1,3P:, , , ,求Y=X 2的分布律 Y=X 2:(2)2 (1)2(0)2(1)2(3)2 P: 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y的分布律为: Y: 0 1 4 9 P: 31
15、.二十八 设随机变量X在(0,1)上服从均匀分布(1)求Y=eX的分布密度 X的分布密度为:Y=g (X) =eX是单调增函数又X=h (Y)=lnY,反函数存在且 = ming (0), g (1)=min(1, e)=1 maxg (0), g (1)=max(1, e)= e Y的分布密度为:(2)求Y=2lnX的概率密度。 Y= g (X)=2lnX是单调减函数又 反函数存在。且 = ming (0), g (1)=min(+, 0 )=0 =maxg (0), g (1)=max(+, 0 )= + Y的分布密度为:32.二十九 设XN(0,1)(1)求Y=eX的概率密度 X的概率密
16、度是 Y= g (X)=eX是单调增函数又X= h (Y ) = lnY 反函数存在且 = ming (), g (+)=min(0, +)=0 = maxg (), g (+)= max(0, +)= + Y的分布密度为:(2)求Y=2X2+1的概率密度。在这里,Y=2X2+1在(+,)不是单调函数,没有一般的结论可用。设Y的分布函数是FY(y),则FY ( y)=P (Yy)=P (2X2+1y) =当y<1时:FY ( y)=0当y1时:故Y的分布密度( y)是:当y1时:( y)= FY ( y)' = (0)' =0当y>1时,( y)= FY ( y)&
17、#39; = =(3)求Y=| X |的概率密度。Y的分布函数为 FY ( y)=P (Yy )=P ( | X |y)当y<0时,FY ( y)=0当y0时,FY ( y)=P (| X |y )=P (yXy)= Y的概率密度为:当y0时:( y)= FY ( y)' = (0)' =0当y>0时:( y)= FY ( y)' =33.三十 (1)设随机变量X的概率密度为f (x),求Y = X 3的概率密度。Y=g (X )= X 3是X单调增函数,又X=h (Y ) =,反函数存在,且 = ming (), g (+)=min(0, +)= = ma
18、xg (), g (+)= max(0, +)= + Y的分布密度为: ( y)= f h ( h )·| h' ( y)| = (2)设随机变量X服从参数为1的指数分布,求Y=X 2的概率密度。xOy=x2y法一: X的分布密度为: Y=x2是非单调函数当 x<0时 y=x2 ' 反函数是当 x<0时 y=x2 & Y fY (y) = =法二: Y fY (y) =34.三十一 设X的概率密度为求Y=sin X的概率密度。FY ( y)=P (Yy) = P (sinXy)当y<0时:FY ( y)=0当0y1时:FY ( y) = P
19、(sinXy) = P (0Xarc sin y或arc sin yX) =当1<y时:FY ( y)=1 Y的概率密度( y )为:y0时,( y )= FY ( y)' = (0 )' = 00<y<1时,( y )= FY ( y)' = =1y时,( y )= FY ( y)' = = 036.三十三 某物体的温度T (oF )是一个随机变量,且有TN(98.6,2),试求()的概率密度。已知法一: T的概率密度为 又 是单调增函数。 反函数存在。 且 = ming (), g (+)=min(, +)= = maxg (), g (+)= max(, +)= + 的概率密度()为 法二:根据定理:若XN(1, 1),则Y=aX+bN (a1+b, a2 2 )由于TN(98.6, 2)故 故的概率密度为:专心-专注-专业