内蒙古自治区呼和浩特市师范大学附属中学2021年高三数学理期末试卷含解析.pdf

上传人:赵** 文档编号:36408311 上传时间:2022-08-27 格式:PDF 页数:6 大小:691.56KB
返回 下载 相关 举报
内蒙古自治区呼和浩特市师范大学附属中学2021年高三数学理期末试卷含解析.pdf_第1页
第1页 / 共6页
内蒙古自治区呼和浩特市师范大学附属中学2021年高三数学理期末试卷含解析.pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《内蒙古自治区呼和浩特市师范大学附属中学2021年高三数学理期末试卷含解析.pdf》由会员分享,可在线阅读,更多相关《内蒙古自治区呼和浩特市师范大学附属中学2021年高三数学理期末试卷含解析.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Word 文档下载后(可任意编辑)内蒙古自治区呼和浩特市师范大学附属中学内蒙古自治区呼和浩特市师范大学附属中学 20212021 年高三数学年高三数学理期末试卷含解析理期末试卷含解析一、一、 选择题:本大题共选择题:本大题共 1010 小题,每小题小题,每小题 5 5 分,共分,共 5050 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有是一个符合题目要求的是一个符合题目要求的1. 设为奇函数且在(,0) 内是减函数,且的解集为()A.(2,0)(2,+) B.(,2)(0,2)C. (,2)(2,+) D. (2,0)(0,2)参考答案:参考答案:D试题分析:由函数是奇

2、函数可知,函数在内是减函数,所以在内为减函数,不等式变形为或,借助于图像解不等式可知解集为2. 已知集合,若,则 的取值范围是A. B. C. D.参考答案:参考答案:D.因为,所以.所以,即,选 B.3.函数,若,,,则的最小值为A、 B、 C、 D、参考答案:参考答案:答案:答案:A4.外接圆的半径为 1,圆心为 O,且,则()ABC3D参考答案:参考答案:C略5. 已知 为虚数单位,则=A0 B3 D6参考答案:参考答案:D6. 已知,则=()(A) (B) (C)参考答案:参考答案:C略7. 使不等式成立的必要不充分条件是()A.B.C.D.或参考答案:参考答案:B8. 一个几何体的三

3、视图如图所示,那么该几何体的最长棱长为等于 (D) CWord 文档下载后(可任意编辑)A2B2C3D参考答案:参考答案:C9. 某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为 y,在直角坐标系 xoy 中,以(x,y)为坐标的点落在直线 2xy=1 上的概率为()ABCD参考答案:参考答案:A【考点】古典概型及其概率计算公式【专题】计算题;转化思想;综合法;概率与统计【分析】试验发生包含的事件是先后掷两次骰子,共有66=36 种结果,利用列举法求出满足条件的事件包含的基本事件个数,根据古典概型的概率公式得到以(x,y)为坐标的点落在直线 2xy=1 上的概率【解答】

4、解:由题意知本题是一个古典概型,试验发生包含的事件是先后掷两次骰子,共有66=36 种结果,满足条件的事件是(x,y)为坐标的点落在直线 2xy=1 上,当 x=1,y=1,x=2,y=3;x=3,y=5,共有 3 种结果,根据古典概型的概率公式得到以(x,y)为坐标的点落在直线 2xy=1 上的概率:P=故选:A【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意古典概率计算公式的合理运用10. 已知 为虚数单位,复数,为其共轭复数,则等于A.B. C.D.参考答案:参考答案:A,选 A.二、二、 填空题填空题: :本大题共本大题共 7 7 小题小题, ,每小题每小题 4 4 分分,

5、 ,共共 2828分分11. 已知数列an是递增的等比数列,a1+a4=9,a2a3=8,则 a6的值等于参考答案:参考答案:32【考点】等比数列的通项公式【专题】方程思想;转化思想;等差数列与等比数列【分析】数列an是递增的等比数列,a1+a4=9,a2a3=8=a1a4,解得 a1,a4再利用等比数列的通项公式即可得出【解答】解:数列an是递增的等比数列,a1+a4=9,a2a3=8=a1a4,解得 a1=1,a4=8Word 文档下载后(可任意编辑)q3=8,解得 q=2a56=2 =32故答案为:32【点评】本题考查了等比数列的通项公式、一元二次方程的解法,考查了推理能力与计算能力,属

6、于中档题12. 已知在中,,且是的外心,则,.参考答案:参考答案:2,13. 若函数的定义域为0,1,则的定义域为 .参考答案:参考答案:14. 已知数列an满足 a1=1,an=logn(n+1)(n2,nN*)定义:使乘积 a1?a2ak为正整数的 k(kN*)叫做“易整数”则在1,2015内所有“易整数”的和为参考答案:参考答案:2036【考点】数列的函数特性【专题】函数的性质及应用【分析】由题意,及对数的换底公式知,a1?a2?a3ak=log2(k+1),结合等比数列的前 n 项和进行求解即可【解答】解:an=logn(n+1),由 a1?a2ak为整数得 1?log23?log34

7、logk(k+1)=log2(k+1)为整数,设 log2(k+1)=m,则 k+1=2m,k=2m1;211=20482015,区间1,2015内所有“易整数”为:211,221,231,241,2101,其和 M=211+221+231+241+2101=10=211210=2036故答案为:2036【点评】本题以新定义“易整数”为切入点,主要考查了对数的换底公式及对数的运算性质的应用15. 某班级要从名男生、名女生中选派人参加社区服务,如果要求至少有 名女生,那么不同的选派方案种数为(用数字作答)参考答案:参考答案:6人中选 4人的方案种,没有女生的方案只有一种,所以满足要求的方案总数有

8、14 种。16. 已知,则的最小值是 .参考答案:参考答案:4由,得,即,所以,由,当且仅当,即,取等号,所以最小值为 4.17. 命题“任意 xR,都有 x20”的否定为参考答案:参考答案:“存在 xR,有 x20”【考点】命题的否定【专题】简易逻辑【分析】根据全称命题的否定是特称命题即可得到命题的否定【解答】解:全称命题的否定是特称命题,命题“任意 xR,都有 x20”的否定为:“存在 xR,有 x20”故答案为:“存在 xR,有 x20”【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题即可得到结论三、三、 解答题:本大题共解答题:本大题共

9、5 5 小题,共小题,共 7272分。解答应写出文字说明,证明过程或演算步骤分。解答应写出文字说明,证明过程或演算步骤Word 文档下载后(可任意编辑)18. 在直角坐标系 xOy中,曲线 C1:(t 为参数,),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2:.(1)试将曲线 C1与 C2化为直角坐标系 xOy中的普通方程,并指出两曲线有公共点时a的取值范围;(2)当时,两曲线相交于 A、B两点,求.参考答案:参考答案:(1)曲线:,消去参数 可得普通方程为.由,得.故曲线:化为平面直角坐标系中的普通方程为.当两曲线有公共点时的取值范围为.(2)当时,曲线:,即,联立方程,消

10、去,得两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.19.设命题:实数满足,其中,命题:实数满足.(1)若且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.参考答案:参考答案:解:(1)当时,又为真,所以真且真,由,得所以实数的取值范围为 (2) 因为是的充分不必要条件,所以是的充分不必要条件,又,所以,解得所以实数的取值范围为略20. 已知函数 f(x)=lnxax+(a R)(1)当 a=时,求函数 f(x)的单调区间和极值(2)若 g(x)=f(x)+a(x1)有两个零点 x1,x2,且 x1x2,求证:x1+x21参考答案:参考答案:【考点】利用导数

11、研究函数的极值;导数在最大值、最小值问题中的应用【分析】(1)当 a=时,求导,令 f(x)0求得函数的单调递增区间,f(x)0即可求得函数的单调递减区间,即当 x=时,f(x)取极值;(2)求出个零点 x1,x2,得到 x1+x2=+=构造函数 h(t)=t2lnt,(0t1),根据函数的单调性证明即可【解答】解:(1)当 a=时,f(x)=lnx+x+,(x0),求导,f(x)=+=,令 f(x)=0,解得:x=或 x=1(舍去),当 f(x)0,解得:x,当 f(x)0,解得:0 x,Word 文档下载后(可任意编辑)函数的单调递增区间为(,+),单调递减区间为(0,),当 x=时,函数

12、取极小值,极小值为 2ln3;(2)证明:根据题意,g(x)=f(x)+a(x1)=lnx+a,(x0),因为 x1,x2是函数 g(x)的两个零点,lnx1+a=0,lnx2+a=0,两式相减,可得 ln=,即 ln=,故 x1x2=那么 x1=,x2=令 t=,其中 0t1,则 x1+x2=+=构造函数 h(t)=t2lnt,(0t1),则 h(t)=,0t1,h(t)0恒成立,故 h(t)h(1),即 t2lnt0,则1,故 x1+x2121. (本小题满分 13 分)定义在上的单调函数满足,且对任意都有()求证:为奇函数.()若对任意恒成立,求实数的取值范围.参考答案:参考答案:()证明:令,代入式,得即令,代入式,得,又则有即对任意成立,所以是奇函数.4分()解:,即,又在上是单调函数,所以在上是增函数.又由(1)是奇函数.对任意成立.(法一):令,问题等价于对任意恒成立.8 分令其对称轴.当时,即时,符合题意;当时,对任意恒成立解得12分综上所述当时,对任意恒成立. 13 分(法二):分离,Word 文档下载后(可任意编辑)13 分22. (本题 12 分)椭圆且的离心率为,求椭圆的方程,椭圆与直线相交于点,参考答案:参考答案:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁