《高中抛物线知识点归纳总结与练习题及答案1.docx》由会员分享,可在线阅读,更多相关《高中抛物线知识点归纳总结与练习题及答案1.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、抛物线xyOlFxyOlFlFxyOxyOlF定义平面内及一个定点和一条定直线的间隔 相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线。=点M到直线的间隔 范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线及焦点位于顶点两侧且到顶点的间隔 相等。顶点到准线的间隔 焦点到准线的间隔 焦半径焦 点弦 长焦点弦的几条性质oxFy以为直径的圆必及准线相切若的倾斜角为,则若的倾斜角为,则 切线方程一 直线及抛物线的位置关系直线,抛物线,消y得:(1)当k=0时,直线及抛物线的对称轴平行,有一个交点;(2)当k0时, 0,直线及抛物
2、线相交,两个不同交点; =0, 直线及抛物线相切,一个切点; 0,直线及抛物线相离,无公共点。(3) 若直线及抛物线只有一个公共点,则直线及抛物线必相切吗(不肯定)二 关于直线及抛物线的位置关系问题常用途理方法直线: 抛物线, 联立方程法: 设交点坐标为,,则有,以及,还可进一步求出, 在涉及弦长,中点,对称,面积等问题时,常用此法,比方1. 相交弦AB的弦长 或 b. 中点, , 点差法:设交点坐标为,代入抛物线方程,得 将两式相减,可得a. 在涉及斜率问题时,b. 在涉及中点轨迹问题时,设线段的中点为, 即,同理,对于抛物线,若直线及抛物线相交于两点,点是弦的中点,则有(留意能用这个公式的
3、条件:1)直线及抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)抛物线练习及答案1、已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的间隔 及点P到抛物线焦点间隔 之和获得最小值时,点P的坐标为 。(,1)2、已知点P是抛物线上的一个动点,则点P到点(0,2)的间隔 及P到该抛物线准线的间隔 之和的最小值为 。3、直线及抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为 。4、设是坐标原点,是抛物线的焦点,是抛物线上的一点,及轴正向的夹角为,则为 。5、抛物线的焦点为,准线为,经过且斜率为的直线及抛物线在轴上方的局部相交于点,垂足为,则的面积是 。6、已知
4、抛物线的焦点为,准线及轴的交点为,点在上且,则的面积为 。7、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 。8、在平面直角坐标系中,有肯定点,若线段的垂直平分线过抛物线则该抛物线的方程是 。9、在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 。10、抛物线上的点到直线间隔 的最小值是 。 11、已知抛物线y2=4x,过点P(4,0)的直线及抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 。3212、若曲线|1及直线没有公共点,则、分别应满意的条件是 。=0,-12时,点P(x,0)存在无穷多
5、条“相关弦”.给定x02.(1)证明:点P(x0,0)的全部“相关弦”的中点的横坐标一样;(2)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.解: (1)设AB为点P(x0,0)的随意一条“相关弦”,且点A、B的坐标分别是(x1,y1)、(x2,y2)(x1x2),则y21=4x1, y22=4x2,两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.设直线AB的斜率是k,弦AB的中点是M(xm, ym),则k=.从而AB的垂直平分线l的方程为 又点P(x0,0)在直线上,所以 而于是故点
6、P(x0,0)的全部“相关弦”的中点的横坐标都是x0-2.(2)由(1)知,弦AB所在直线的方程是,代入中,整理得 ()则是方程()的两个实根,且设点P的“相关弦”AB的弦长为l,则因为03,则2(x0-3) (0, 4x0-8),所以当t=2(x0-3),即=2(x0-3)时,l有最大值2(x0-1).若2x03,则2(x0-3)0,g(t)在区间(0,4 x0-8)上是减函数,所以0l23时,点P(x0,0)的“相关弦”的弦长中存在最大值,且最大值为2(x0-1);当20)的焦点为F,准线为l,经过F的直线及抛物线交于A、B两点,交准线于C点,点A在x轴上方,AKl,垂足为K,若|BC|2
7、|BF|,且|AF|4,则AKF的面积是 ()A4 B3 C4 D8例4、过抛物线y22px(p0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|2|BF|,且|AF|3则此抛物线的方程为 ( ) Ay2xBy29x Cy2x Dy23x三、抛物线的综合问题例5、(2011江西高考)已知过抛物线y22px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)上,M点到抛物线C的焦点F的间隔 为2,直线l:yxb及抛物线C交于A,B两点(1)求抛物线C的方程;(2)若以AB为直径的圆及x轴相切,求该圆的方程例题答案解析一、抛物线的定义及其应用例1、(
8、1)如图,易知抛物线的焦点为F(1,0),准线是x1.由抛物线的定义知:点P到直线x1的间隔 等于点P到焦点F的间隔 于是,问题转化为:在曲线上求一点P,使点P到点A(1,1)的间隔 及点P到F(1,0)的间隔 之和最小明显,连结AF交曲线于P点,则所求的最小值为|AF|,即为.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB|PF|P1B|P1Q|BQ|4.即|PB|PF|的最小值为4.例2、解析:圆心到抛物线准线的间隔 为p,即p4,依据已 知只要|FM|4即可依据抛物线定|FM|y02由y024,解得y02,故y0的取值范围是(2,)二、抛物线的标
9、准方程和几何性质例3、设点A(x1,y1),其中y10.由点B作抛物线的准线的垂线,垂足为B1.则有 |BF|BB1|;又|CB|2|FB|,因此有|CB|2|BB1|,cosCBB1,CBB1.即直线AB及x轴的夹角为.又|AF|AK|x14,因此y14sin2,因此AKF的面积等于|AK|y1424.例4分别过点A、B作AA1、BB1垂直于l,且垂足分别为A1、B1,由已知条件|BC|2|BF|得|BC|2|BB1|,BCB130,又|AA1|AF|3,|AC|2|AA1|6,|CF|AC|AF|633,F为线段AC的中点故点F到准线的间隔 为p|AA1|,故抛物线的方程为y23x.三、抛
10、物线的综合问题例5、(1)直线AB的方程是y2(x),及y22px联立,从而有4x25pxp20,所以:x1x2,由抛物线定义得:|AB|x1x2p9,所以p4,从而抛物线方程是y28x.(2)由p4,4x25pxp20可简化为x25x40,从而x11,x24,y12,y24,从而A(1,2),B(4,4);设 (x3,y3)(1,2)(4,4)(41,42)又y8x3,即2(21)28(41)即(21)241.解得0,或2.例6、 (1)设动点P的坐标为(x,y),由题意有|x|1.化简得y22x2|x|.当x0时,y24x;当x0时,y0.所以,动点P的轨迹C的方程为y24x(x0)和y0
11、(x0)的准线为x,由抛物线定义和已知条件可知|MF|1()12,解得p2, 故所求抛物线C的方程为y24x.(2)联立消去x并化简整理得y28y8b0.依题意应有6432b0,解得b2.设A(x1,y1),B(x2,y2),则y1y28,y1y28b,设圆心Q(x0,y0),则应用x0,y04.因为以AB为直径的圆及x轴相切,所以圆的半径为r|y0|4.又|AB|所以|AB|2r8,解得b.所以x1x22b2y12b2y24b16,则圆心Q的坐标为(,4)故所求圆的方程为(x)2(y4)216.练习题1已知抛物线x2ay的焦点恰好为双曲线y2x22的上焦点,则a等于 ()A1B4 C8 D1
12、62抛物线y4x2上的一点M到焦点的间隔 为1,则点M的纵坐标是 ()A B C. D.3(2011辽宁高考)已知F是拋物线y2x的焦点,A,B是该拋物线上的两点,|AF|BF|3,则线段AB的中点到y轴的间隔 为 () A. B1 C. D.4已知抛物线y22px,以过焦点的弦为直径的圆及抛物线准线的位置关系是 ()A相离 B相交 C相切 D不确定5(2012宜宾检测)已知F为抛物线y28x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则|FA|FB|的值等于 () A4 B8C 8 D166在y2x2上有一点P,它到A(1,3)的间隔 及它到焦点的间隔 之和最小,则点P的坐标是 ()A
13、(2,1) B(1,2) C(2,1) D(1,2) 7设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足假如直线AF的斜率为,那么|PF| ()A4 B8 C8 D168(2011陕西高考)设抛物线的顶点在原点,准线方程为x2,则抛物线的方程是 ( ) Ay28x By28x Cy24x Dy24x9(2012永州模拟)以抛物线x216y的焦点为圆心,且及抛物线的准线相切的圆的方程为_10已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(3,m)到焦点的间隔 是5,则抛物线的方程为_11已知抛物线y24x及直线2xy40相交于A、B两点,抛物线的焦点为F,那么| |
14、 | | _.12过抛物线y24x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,若x1x26,那么 |AB|等于_13依据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x29y2144的左顶点;(2)过点P(2,4)14已知点A(1,0),B(1,1),抛物线C:y24x,O为坐标原点,过点A的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.若向量及的夹角为,求POM的面积练习题:1解析:依据抛物线方程可得其焦点坐标为(0,),双曲线的上焦点为(0,2),依题意则有2解得a8.2解析:抛物线方程可化为x2,其准线方程为y.设M(x0,y0),则由抛
15、物线的定义,可知y01y0.3解析:依据拋物线定义及梯形中位线定理,得线段AB中点到y轴的间隔 为:(|AF|BF|).4解析:设抛物线焦点弦为AB,中点为M,准线l,A1、B1分别为A、B在直线l上的射影,则|AA1|AF|,|BB1|BF|,于是M到l的间隔 d(|AA1|BB1|)(|AF|BF|)|AB|半径,故相切5解析:依题意F(2,0),所以直线方程为yx2由,消去y得x212x40.设A(x1,y1),B(x2,y2),则|FA|FB|(x12)(x22)|x1x2|8.6解析:如图所示,直线l为抛物线y2x2的准线,F为其焦点,PNl,AN1l,由抛物线的定义知,|PF|PN
16、|,|AP|PF|AP|PN|AN1|,当且仅当A、P、N三点共线时取等号P点的横坐标及A点的横坐标一样即为1,则可解除A、C、D.答案:B7解析:设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足假如直线AF的斜率为,那么|PF| ()A4 B8C8 D168解析:由准线方程x2,可知抛物线为焦点在x轴正 ,半轴上的标准方程,同时得p4,所以标准方程为 y22px8x9解析:抛物线的焦点为F(0,4),准线为y4,则圆心为(0,4),半径r8. 所以,圆的方程为x2(y4)264.10解析:设抛物线方程为x2ay(a0),则准线为y.Q(3,m)在抛物线上,9am.而点
17、Q到焦点的间隔 等于点Q到准线的间隔 ,|m()|5.将m代入,得|5,解得,a2,或a18,所求抛物线的方程为x22y,或x218y.11解析:由,消去y,得x25x40(*),方程(*)的两根为A、B两点的横坐标,故x1x25,因为抛物线y24x的焦点为F(1,0),所以| | | | (x11)(x21)712解析:因线段AB过焦点F,则|AB|AF|BF|.又由抛物线的定义知|AF|x11,|BF|x21,故|AB|x1x228.13解析:双曲线方程化为1,左顶点为(3,0),由题意设抛物线方程为y22px(p0),则3,p6,抛物线方程为y212x.(2)由于P(2,4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y2mx或x2ny,代入P点坐标求得m8,n1,所求抛物线方程为y28x或x2y.14解:设点M(,y1),P(,y2),P,M,A三点共线,kAMkPM,即,即,y1y24. y1y25.向量 及 的夹角为,| | |cos5.SPOM| | | | sin.