1411直角三角形三边的关系.ppt

上传人:仙*** 文档编号:33408932 上传时间:2022-08-10 格式:PPT 页数:28 大小:2.12MB
返回 下载 相关 举报
1411直角三角形三边的关系.ppt_第1页
第1页 / 共28页
1411直角三角形三边的关系.ppt_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《1411直角三角形三边的关系.ppt》由会员分享,可在线阅读,更多相关《1411直角三角形三边的关系.ppt(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、14.1勾股定理勾股定理abc学习目标学习目标课堂小结课堂小结巩固练习巩固练习例题讲解例题讲解学习五步曲学习五步曲探究新知探究新知学习目标学习目标 1、掌握勾股定理、掌握勾股定理,了解利用拼图验证勾股了解利用拼图验证勾股定理的方法定理的方法.2、能运用勾股定理由已知直角三角形中的两、能运用勾股定理由已知直角三角形中的两边长边长,求出第三边长求出第三边长.3、能正确灵活运用勾股定理及由它得到的直、能正确灵活运用勾股定理及由它得到的直角三角形的判别方法角三角形的判别方法.2002年在北京召开的国际数学家年在北京召开的国际数学家大会()。在那大会()。在那个大会上,到处可以看到一个简个大会上,到处可

2、以看到一个简洁优美的图案在流动,那个远看洁优美的图案在流动,那个远看像旋转的纸风车的图案就是大会像旋转的纸风车的图案就是大会的会标的会标探究新知探究新知 那是采用了那是采用了1700多年前中国古代数学多年前中国古代数学家赵爽用来证明勾股定理的弦图家赵爽用来证明勾股定理的弦图P 、 Q 、 R 的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?等腰直角三角形中等腰直角三角形中,两直角边的平方和等于斜边的平方两直角边的平方和等于斜边的平方 那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方

3、呢?ABCPQRP+Q=RAC2+BC2=AB2正方形正方形P的面积的面积 平方厘米;平方厘米;正方形正方形Q的面积的面积 平方厘米;平方厘米;正方形正方形R的面积的面积 平方厘米平方厘米正方形正方形P、 Q、 R的面积之间的关系的面积之间的关系是是 直角三角形的三边的长度之间直角三角形的三边的长度之间存在关系存在关系 (每一小方格表示(每一小方格表示1平方厘米)平方厘米)91625P+ Q= RAC2+BC2=AB2在一般的直角三角形中,两直角边的平方和等于斜边的平方在一般的直角三角形中,两直角边的平方和等于斜边的平方也成立也成立! 分分“割割”成若干个直角边为整数的三角形。成若干个直角边为

4、整数的三角形。25144321R 在方格图中,在方格图中,用三角尺画出两条用三角尺画出两条直角边分别为直角边分别为5cm、 12cm的直角三角形,的直角三角形,然后用刻度尺量出然后用刻度尺量出斜边的长,并验证斜边的长,并验证关系关系“两直角边的两直角边的平方和等于斜边的平方和等于斜边的平方平方”对这个直角对这个直角三角形是否成立三角形是否成立512?52+122= 169132= 169成立成立 对于任意的直角三角形,如果对于任意的直角三角形,如果它的两条直角边分别为它的两条直角边分别为a、 b,斜边为,斜边为c,那么一定有那么一定有a2b2c2。勾股定理勾股定理揭示了揭示了直角三角形三边直角

5、三角形三边之之间的关系间的关系 勾股定理:勾股定理:abc直角三角形两直角边的平方和等于斜边的平方直角三角形两直角边的平方和等于斜边的平方a a2 2+b+b2 2=c=c2 2a ac cb b 直角三角形两直角边的平方和直角三角形两直角边的平方和等于斜边的平方等于斜边的平方. .直直2 2+ +直直2 2= =斜斜2 2做一做:做一做: P62540026xP的面积的面积 =_X=_X=_24322622x24225BACAB=_AC=_BC=_251520 求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、z z的值的值. .8181144144x xy yz z62562

6、5576576144144169169X=81+1442Y=169-144Z=625-57622X=15Y=5Z=7S1S2S3S4S5S6S7已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值结论结论:S1+S2+S3+S4=S5+S6=S7比比一一比比看看看看谁谁算算得得快!快!3.3.求下列直角三角形中未知边的长求下列直角三角形中未知边的长: :可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x例例1如图,将长为10米的梯子AC斜靠在墙上,长为6米,求梯子上端A到墙的底边的垂直距离在Rt中,米,米,

7、0米,米,根据勾股定理可得根据勾股定理可得 =8(米)(米)答:答: 梯子上端梯子上端A到墙的底边的垂直距离到墙的底边的垂直距离 为为8米米 AC2222 10106?解解 一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?用四个完全相同的直角三角形,然后将它们拼成用四个完全相同的直角三角形,然后将它们拼成如图所示的图形如图所示的图形大正方形的面积可以表示为大正方形的面积可以表示为 。又可以表示为又可以表示为 对比两种表示方法,看看能不能对比两种表示方法,看看能不能得到勾股定理的结论得到勾股定理的结论(a+

8、b)2=24abC2a2+ b2c2=(a+b)2cab224用四个完全相同的直角三角形,还可以拼成如图用四个完全相同的直角三角形,还可以拼成如图所示的图形所示的图形大正方形的面积可以表示为大正方形的面积可以表示为 。又可以表示为又可以表示为 对比两种表示方法,看看能不能得到勾股对比两种表示方法,看看能不能得到勾股定理的结论定理的结论22)(abc222cbaab21422)(abcab214= 读一读读一读 我国古代把直角三角形中较短的直角边称为我国古代把直角三角形中较短的直角边称为勾勾,较长的直角边称为较长的直角边称为股股,斜边称为,斜边称为弦弦.图图1-1称为称为“弦图弦图”,最早是由三

9、国时期的数学家赵爽在为,最早是由三国时期的数学家赵爽在为周髀算经周髀算经作法时给出的作法时给出的. 弦弦股股勾勾图1-1 两千多年前,古希腊有个哥拉两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,定理。为了纪念毕达哥拉斯学派,1955国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,

10、国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,理。为了纪念毕达哥拉斯学派,1955年年希腊曾经发行了一枚纪念邮票。希腊曾经发行了一枚纪念邮票。 我国是最

11、早了解勾股定理的我国是最早了解勾股定理的国家之一。早在三千多年前,周国家之一。早在三千多年前,周朝数学家商高就提出,将一根直朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即股等于四,那么弦就等于五,即“勾三、股四、弦五勾三、股四、弦五”,它被记,它被记载于我国古代著名的数学著作载于我国古代著名的数学著作周髀算经周髀算经中。中。a a2 2+b+b2 2=c=c2 2a ac cb b 直角三角形两直角边的平方和直角三角形两直角边的平方和等于斜边的平方等于斜边的平方. .勾勾股股弦弦 勾股定理勾股定理( (毕达哥拉斯定理毕达哥拉

12、斯定理) )直直2 2+ +直直2 2= =斜斜2 2 如图如图,为了求出位于湖两岸的两点,为了求出位于湖两岸的两点A、 B之间的距离,之间的距离,一个观测者在点一个观测者在点C设桩,使三角形恰好为直角三角设桩,使三角形恰好为直角三角形通过测量,得到形通过测量,得到AC长长160米,长米,长128米问从点米问从点A穿过湖到点穿过湖到点B有多远有多远?如图如图14.1.9,在直角三角形中,在直角三角形中,AC米,米,米,米,根据勾股定理可得根据勾股定理可得 96(米)(米)答:答: 从点从点A穿过湖到点穿过湖到点B有有96米米22BCAC22128160 解解例例如图,大风将一根木制旗如图,大风

13、将一根木制旗杆吹裂,随时都可能倒下,杆吹裂,随时都可能倒下,十分危急。接警后十分危急。接警后“119”119”迅速赶到现场,并决定从迅速赶到现场,并决定从断裂处将旗杆折断。现在断裂处将旗杆折断。现在需要划出一个安全警戒区需要划出一个安全警戒区域,那么你能确定这个安域,那么你能确定这个安全区域的半径至少是多少全区域的半径至少是多少米吗?米吗?9m24m?1. 如图,小方格都是边长为如图,小方格都是边长为1的正方形,求四边的正方形,求四边形形D的面积与周长的面积与周长练习练习2. 假期中,王强和同学到某海岛上去探宝旅游,按假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东

14、走照探宝图(如图),他们登陆后先往东走8千米,千米,又往北走又往北走2千米,遇到障碍后又往西走千米,遇到障碍后又往西走3千米,再折千米,再折向北走到向北走到6千米处往东一拐,仅走千米处往东一拐,仅走1千米就找到宝藏,千米就找到宝藏,问登陆点问登陆点A到宝藏埋藏点到宝藏埋藏点B的直线距离是多少千米的直线距离是多少千米?abcS梯形ABCD=12a+b 2=12(a2+2ab+ b2)又S梯形ABCD=SAED+SEBC+SCED=12ab+12ba+12c2=12(2ab+ c2)2=a2+b2证法证法abc课堂小结勾股定理勾股定理直角三角形直角三角形两直角边的平方和等于斜边两直角边的平方和等于斜边的平方的平方a abc ca a2 2+b+b2 2=c=c2 2直直2 2+ +直直2 2= =斜斜2 2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁