《初二数学勾股定理教案.docx》由会员分享,可在线阅读,更多相关《初二数学勾股定理教案.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑初二数学勾股定理教案初二数学勾股定理教案 篇1 一、利用勾股定理进行计算 1.求面积 例1:如图1,在等腰ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。 析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形三线合一性质,可联想作底边上的高AD,此时D也为底边的中点,这样在RtABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为BCAD=166=48cm2。 2.求边长 例2:如图2,在ABC中,C=135?,BC=,AC=2,试求AB的长。 析解:题中没有直角
2、三角形,不能直接用勾股定理,可考虑过点B作BDAC,交AC的延长线于D点,构成RtCBD和RtABD。在RtCBD中,因为ACB=135,所以BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在RtABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。 点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。 二、利用勾股定理的逆定理判断直角三角形 例3:已知a,
3、b,c为ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。 析解:由于所给条件是关于a,b,c的一个等式,要判断ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)20,(b-12)20,(c-13)20,所以a-5=0,b-12=0,c-
4、13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即ABC是直角三角形。 点评:用代数方法来研究几何问题是勾股定理的逆定理的数形结合思想的重要体现。 三、利用勾股定理说明线段平方和、差之间的关系 例4:如图3,在ABC中,C=90?,D是AC的中点,DEAB于E点,试说明:BC2=BE2-AE2。 析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到C=BED=AED=90?及CD=AD,可连结BD来解决。因为C=90?,所以BD2=BC2+CD2。又DEAB,所以BED=AED=90?,在RtBED中,有BD2=BE2+DE2。在RtAED中
5、,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。 点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。 初二数学勾股定理教案 篇2 一、复习巩固 1.叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以B=C。 等腰三角形的顶角平分线,底边上的中线和底边上
6、的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此“三线合一”。 2.若等腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。 2.你能否用已知的知识,通过推理得到你的猜想是正确的? 等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到A=
7、B=C,又由A+B+C=180,从而推出A=B=C=60。 3.上面的条件和结论如何叙述? 等边三角形的各角都相等,并且每一个角都等于60。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也称为正三角形。 例1.在ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的.度数。 分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC可求,所以1可求。 问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不
8、变,计算的结果是否一样? 问题2:求1是否还有其它方法? 三、练习巩固 1.判断下列命题,对的打“”,错的打“”。 a.等腰三角形的角平分线,中线和高互相重合() b.有一个角是60的等腰三角形,其它两个内角也为60( ) 2.如图(2),在ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。 3.P54练习1、2。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。 五、作业: 1.课本P57第7,9题。 2、补充:如图(3),A
9、BC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。 初二数学勾股定理教案 篇3 教学目标 1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。 2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。 3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。 教学重点 了解勾股定理的由来,并能用它来解决一些简单的问题。 教学难点 勾股定理的探究以及推导过程。 教学过程 一、创设问题情景、导入新课 首先出示:投影1
10、(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示课件观察后回答: 1、观察图12,正方形A中有_个小方格,即A的面积为_个单位。 正方形B中有_个小方格,即B的面积为_个单位。 正方形C中有_个小方格,即C的面积为_个单位。 2、你是怎样得出上面的结果的? 3、在学生交流回答的基础上教师进一步设问:图12中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。 二、层层深入、探究新知 1、做一做 出示投影3(书中P3图13) 提问:(1)图13中,A,B,C之间有
11、什么关系?(2)从图12,13中你发现什么? 学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。 2、议一议 图12、13中,你能用三角形的边长表示正方形的面积吗? (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13
12、)请大家想一想(2)中的规律,对这个三角形仍然成立吗? 3、想一想 我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格? 三、巩固练习。 1、在图11的问题中,折断之前旗杆有多高? 2、错例辨析:ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足 =25即:c=5辨析: (1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉ABC是直角三角形,第三边C也不一定
13、是满足,题目中并未交待C是斜边。 综上所述这个题目条件不足,第三边无法求得 四、课堂小结 鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。 五、布置作业 初二数学勾股定理教案 篇4 教学目标 了解勾股定理的一些证明方法,会简单应用勾股定理解决问题 过程与方法: 在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。 情感态度价值观: 通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。 教学过程 1、创设情境 问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”
14、。2022年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义? 师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。 设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。 2、探究勾股定理 观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界 问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观
15、察下图,你从中发现了什么数量关系? 师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论 追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系? 师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。 设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论 问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数
16、量关系也同样成立。 师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。 初二数学勾股定理教案 篇5 教学目标: 一、知识技能 1.理解勾股定理的逆定理的证明方法和证明过程; 2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形; 二、数学思考 1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程; 2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。 三、解决问题 通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解
17、决相关问题。 四、情感态度 1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系; 2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神。 教学重难点: 一重点:勾股定理的逆定理及其应用。 二难点:勾股定理的逆定理的证明。 教学方法 启发引导分组讨论合作交流等。 教学媒体 多媒体课件演示。 教学过程: 一、复习孕新,引入课题 问题: (1)勾股定理的内容是什么? (2)求以线段ab为直角边的直角三角形的斜边c的长: a=3,b=4 a=2.5,b=6 a=4,b=7.5 (3)分
18、别以上述abc为边的三角形的形状会是什么样的呢? 二、动手实践,检验推测 1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状? 学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测。 教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题。在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的。 2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状? 3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形
19、状之间有怎样的关系吗? 三、探索归纳,证明猜想 问题 1.三边长度分别为3cm4cm5cm的三角形与以3cm4cm为直角边的直角三角形之间有什么关系?你是怎样得到的? 2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗? 3.如图18.2-2,若ABC的三边长 满足,试证明ABC是直角三角形,请简要地写出证明过程。 教师提出问题,并适时诱导,指导学生完成问题3的证明。之后,归纳得出勾股定理的逆定理。 四、尝试运用,熟悉定理 问题 1、例1:判断由线段 组成的三角形是不是直角三角形: (1) (2) 2、三角形的两边长分别为3和4,要使这个三角形是
20、直角三角形,则第三条边长是多少? 教师巡视,了解学生对知识的掌握情况。 特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题 五、类比模仿,巩固新知 1.练习:练习题13。 2.思考:习题18.2第5题。 部分学生演板,剩余学生在课堂练习本上独立完成。 小结梳理,内化新知 初二数学勾股定理教案 篇6 教学目标 1、知识与技能目标 学会观察图形,勇于探索图形间的关系,培养学生的空间观念。 2、过程与方法 (1)经历一般规律的探索过程,发展学生的抽象思维能力。 (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
21、 3、情感态度与价值观 (1)通过有趣的问题提高学习数学的兴趣。 (2)在解决实际问题的过程中,体验数学学习的实用性。 教学重点: 探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。 教学难点: 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。 教学准备: 多媒体 教学过程: 第一环节:创设情境,引入新课(3分钟,学生观察、猜想) 情景: 如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近? 第二环节:合作探究(15分钟,学生分组合作探究) 学生分为人活动
22、小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。 学生汇总了四种方案: ()()(3)(4) 学生很容易算出:情形()中AB的路线长为:AA+d,情形()中AB的路线长为:AA+d2所以情形()的路线比情形()要短。 学生在情形()和()的比较中出现困难,但还是有学生提出用剪刀沿母线AA剪开圆柱得到矩形,前三种情形AB是折线,而情形()是线段,故根据两点
23、之间线段最短可判断()最短。 如图: ()中AB的路线长为:AA+d; ()中AB的路线长为:AA+ABAB; ()中AB的路线长为:AO+OBAB; ()中AB的路线长为:AB. 得出结论:利用展开图中两点之间,线段最短解决问题在这个环节中,可让学生沿母线剪开圆柱体,具体观察接下来后提问:怎样计算AB? 在RtAAB中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,取3,则。 第三环节:做一做(7分钟,学生合作探究) 教材23页 李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。 (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘
24、米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 第四环节:巩固练习(10分钟,学生独立完成) 1甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走上午10:00,甲、乙两人相距多远? 2如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。 3有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长? 第五环节课堂小结(3分钟,师生问答) 内容:如何利用勾股定理及逆定理解决最短路程问题? 第六环节:布置作业(2分钟,学生分别记录) 内容: 作业:1课本习题15第1,2,3题 要求:A组(学优生):1、2、3 B组(中等生):1、2 C组(后三分之一生):1第 19 页 共 19 页