《2022年最新人教版八年级数学下册第十九章-一次函数专项攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十九章-一次函数专项攻克试题(含解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十九章-一次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y=kx+1的图象经过点A(1,3)和B(a,-1),则的值为( )A1B2CD2、如图,有一种动
2、画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为( )A3b6B2b6C3b6D2b53、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD4、已知点(1,y1),(4,y2)在一次函数y3xb的图象上,则y1,y2的大小关系是( )Ay1y2By1y2Cy1y2D不能确定5、已知一次函数ykx+b的图象如图,则不等式ax+b2的解集为()Ax1Bx1Cx0Dx06、小斌家、学校、小川家依次在同一条笔直
3、的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A小斌的速度为700m/minB小川的速度为200m/minCa的值为280D小川家距离学校800m7、在函数ykx+3(k0)的图象上有A(1,y1)、B(2,y2)、C(4,y3)三个点,则下列各式中正确的是()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y18
4、、若一次函数ykx+b(k,b为常数,且k0)的图象经过A(0,1),B(1,1),则不等式kx+b10的解集为()Ax0Bx0Cx1Dx19、下列命题中,真命题是( )A若一个三角形的三边长分别是a、b、c,则有B(6,0)是第一象限内的点C所有的无限小数都是无理数D正比例函数()的图象是一条经过原点(0,0)的直线10、下列函数中,一次函数是( )Ay4x5Byx(2x3)Cyax2bxcDy第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若函数ykx+b(k,b为常数)的图象如图所示,那么当0y1时,x的取值范围是 _2、(1)写出一个一次函数的表达式,使得它经过
5、点(1,3):_(2)写出一个一次函数的表达式,使得y随x的增大而减小,且经过第一象限:_3、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200剩余油量Q(升)4035302520则该汽车每行驶100千米的耗油量为 _升4、若一次函数(是常数,)的图像经过点(1,3)和点(1,2),则k=_,b=_5、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点若是等腰三角形,点P的坐标是_三、解答题(5小题,每小题10分,共计5
6、0分)1、已知一次函数的图象过点(1,5),且与正比例函数y12x的图象交于点(2,a)求:(1)一次函数表达式;(2)这两个函数图象与x轴所围成的三角形面积2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价
7、的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家张明和爸爸在整个过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示(1)n的值为_;(2)张明开始返回时与爸爸相距_米;(3)第_分钟吋,两人相距900米4、甲、
8、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m ,n ;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围5、已知一次函数y=2x+4求:(1)求图象与x轴、y轴的交点A、B的坐标 (2)画出函数的图象(3)求AOB的面积-参考答案-一、单选题1、C
9、【解析】【分析】代入A点坐标求一次函数解析式,再根据B点纵坐标代入解析式即可求解【详解】解:一次函数y=kx+1的图象经过点A(1,3),解得k=2,一次函数解析式为:,B(a,-1)在一次函数上,解得,故选:C【点睛】本题主要考查了一次函数的基本概念以及基本性质,解本题的要点在于求出直线的解析式,从而得到答案2、C【解析】【分析】根据题意确定直线y=-2x+b经过哪一点b最大,哪一点b最小,然后代入求出b的取值范围【详解】解:直线y=-2x+b中k=-20,此直线必然经过二四象限由题意可知当直线y=-2x+b经过A(1,1)时b的值最小,即-21+b=1,b=3;当直线y=-2x+b过C(2
10、,2)时,b最大即2=-22+b,b=6,能够使黑色区域变白的b的取值范围为3b6故选:C【点睛】本题考查一次函数的应用、一次函数图象上点的坐标特征,利用数形结合的思想解答是解答本题的关键3、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二
11、、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)4、A【解析】【分析】根据一次函数的性质可得,随的增大而增大,而,即可判断【详解】解:由y3xb可得,则一次函数y3xb的图象,随的增大
12、而增大,故选:A【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键5、D【解析】【分析】观察函数图形得到当x0时,一次函数yax+b的函数值不小于2,即ax+b2解:根据题意得当x0时,ax+b2,【详解】即不等式ax+b2的解集为x0故选:D【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数yaxb的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线ykxb在x轴上(或下)方部分所有的点的横坐标所构成的集合6、C【解析】【分析】根据路程时间求速度可判断A、B;利用小川继续行走的时间小川的速度求出a的值,可判断C;利用开始
13、小斌与小川的距离-小斌到学校的距离可判断D【详解】解:小斌家离学校有2800米,出发4分钟后到学校,v小斌=,故选项A正确;小川家离学校有3600-2800=800米,出发4分钟后到学校,v小川=,故选项B正确;小川继续前行,小斌在学校取好书包后,4分钟后掉头回家,小川行走的路程为:200m/min(8-4)=800m,a的值为800m,故选项C不正确;小川家离学校有3600-2800=800米,故选项D正确故选C【点睛】本题考查行程问题函数图像信息获取与处理,理解图像横纵轴的意义,折点的含义,终点位置的意义,掌握函数图像信息获取与处理的方法,理解图像横纵轴的意义,折点的含义,终点位置的意义是
14、解题关键7、C【解析】【分析】根据一次函数图象的增减性来比较A、B、C三点的纵坐标的大小即可【详解】解:一次函数解析式ykx+3(k0),该函数图象上的点的y值随x的增大而减小又412,y3y1y2故选:C【点睛】本题主要考查了一次函数图象上点坐标特征掌握一次函数的增减性是解答本题的关键8、D【解析】【分析】利用函数的增减性和x=1时的函数图像上点的位置来判断即可【详解】解:如图所示:k0,函数y= kx+b随x的增大而增大,直线过点B(1,1),当x=1时,kx+b=1,即kx+b-1=0,不等式kx+b10的解集为:x1故选择:D【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合
15、分析是解题关键9、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解【详解】解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;C、无限不循环小数都是无理数, D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,
16、无理数的定义,正比例函数的定义是解题的关键10、A【解析】【分析】由题意直接根据一次函数的定义逐个进行分析判断即可【详解】解:A. y4x5是一次函数,故本选项符合题意;B. yx(2x3)=2x2-3x是二次函数,不是一次函数,故本选项不符合题意;C. yax2bxc,当a0时,y=ax2+bx+c是二次函数,不是一次函数,故本选项不符合题意;D. y是反比例函数,故本选项不符合题意;故选:A.【点睛】本题考查一次函数的定义,熟练掌握一次函数的定义是解答此题的关键,注意:形如y=kx+b(k、b为常数,k0)的函数叫一次函数二、填空题1、0x2【解析】【分析】根据一次函数图象的性质利用数形结
17、合可直接解答【详解】解:由一次函数的图象可知,当 时,x的取值范围是故答案为:【点睛】本题考查的是根据一次函数与坐标轴的交点求自变量的范围,利用数形结合的思想是解答此题的关键2、 y=2x+1(答案不唯一) y=x+3(答案不唯一)【解析】【分析】(1)根据要求写即可,只要写出的函数解析式过点(1,3)均可;(2)由题意及一次函数的性质,k0,满足这两个条件的一次函数解析式均可【详解】(1)y=2x+1当x=1时,y=2+1=3即所写的函数解析式满足条件故答案为:y=2x+1(答案不唯一)(2)y=x+3故答案为:y=x+3(答案不唯一)【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数的
18、图象与性质是关键,注意这里的答案都不唯一3、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提4、 【解析】【分析】利用待定系数法即可得【详解】解:由题意,将点和点代入得:,解得,故答案为:,【点睛】本题考查了待定系数法、二元一次方程组,熟练掌握待定系数法是解题关键5、,【解析】【分析】利用分类讨论的思想方法分三种情形讨论解答:,依据题意画出图形,利
19、用勾股定理和轴对称的性质解答即可得出结论【详解】交轴于点,令,则,直线垂直平分交于点,交轴于点,点的横坐标为1时,如图,过点作交轴于点,则,同理,当时,如图,点在的垂直平分线上,点的纵坐标为1,当时,则,如图,综上,若是等腰三角形,点的坐标是或或或故答案为:或或或【点睛】本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键三、解答题1、(1)一次函数表达式为y=-2x+3(2)这两个函数图象与x轴所围成的三角形面积为34【解析】【分析】(1)利用正比例函数求出交点坐标,再通过待定系数法求解出一次
20、函数表达式(2)求出一次函数与x轴的交点坐标,以该三角形在x轴上的边为底,交点坐标的纵坐标的绝对值为高,通过三角形面积公式即可求出答案【详解】(1)解:设一次函数表达式为:y=kx+b, 正比例函数y12x的图象经过点(2,a),a=-122=-1 即该点坐标为(2,1),由题意可知:一次函数的图象过点(1,5)和(2,1),5=-k+b-1=2k+b,解得k=-2b=3, 一次函数表达式为y=-2x+3 (2)解:如图所示,设两个函数图像的交点为P,即P点坐标为(2,1),一次函数与x轴的交点为A,A点是一次函数与x轴的交点坐标,0=-2x+3,解得x=32 ,即A点坐标为(32,0),OA
21、=32 ,P点坐标为(2,1),点P到x轴的距离为1,两个函数图象与x轴所围成的三角形面积为:SOAP=121OA=34【点睛】本题主要是考查了待定系数法求解一次函数表达式以及求解与坐标轴的面积,正确利用待定系数法求出一次函数表达式,合理确定坐标轴围成的三角形的底和高,这是解决本题的关键2、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,
22、联立求解即可; (2)设购进N95型a箱,依题意得:2250(1+10%)a+50080%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 225
23、0(1+10%)a+50080%(80a)115000 解得:a40a取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组
24、;(3)根据各数量之间的关系,找出w关于a的函数关系式3、(1)3000;(2)1500;(3)18或30【解析】【分析】(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意m=15,即可求得n的值;(2)根据(1)中m,n的值代入函数解析式,求得y2,根据图象求得y1,根据题意求得当x=20时,y1-y2的值即可求解;(3)分两种情况讨论,当张明的爸爸返回时,张明继续跑,和张明返回时,根据(2)的结论令y1-y2=900,解方程即可求解【详解】解:(1)400020=200米每分钟根据题意张明继续前行,5分钟后也原路返回,m=20-5=15n=1
25、5200=3000故答案为:3000;(2)设y1=ax+c,y2=kx+b将20,4000,45,0代入y1,将点15,3000,45,0代入y2,得20a+c=400045a+c=0,15k+b=300045k+b=0解得a=-160c=7200,k=-100b=4500y1=-160x+7200,y2=-100x+4500根据题意x=20时,y1-y2=-16020+7200-10020+4500=4000-2500=1500(米)故答案为:1500;(3)当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为y=ax,将20,4000代入,即4000=
26、20a解得a=200即y=200x200x-100x+4500=900解得x=18两人都返回时,则y1-y2=900-160x+7200-100x+4500=900解得x=30第30分钟时,两人相距900米故答案为:18或30【点睛】本题考查了一次函数的应用,根据函数图象获取信息是解题的关键4、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55x85或92.5x100【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程速度可求提速后所用时间,即可得到m值,进
27、而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是4030-10=2(m/s);甲出发一段时间后速度提高为原来的3倍,甲提速后速度为6m/s,故提速后甲行走所用时间为:400-406=60(s),m=30+60=90(s)n=40036090=40090360=100(s);故答案为10;2;9
28、0;100;(2)设OA段对应的函数关系式为y=kx,A(90,360)在OA上,90k=360,解得k=4,y=4x设BC段对应的函数关系式为y=k1x+b,B(30,40)、C(90,400)在BC上,30k1+b4090k1+b400,解得k16b-140,y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70答:当x为70秒时,甲追上了乙(3)由题意可得,4x-40+6(x-30)=30,解得x55或x85,即55x85时,甲、乙之间的距离不超过30米; 当4x40030时,解得x92.5,即92.5x100时,甲、乙之间的距离不超过30米; 由上可得,当甲、乙之间的距离不
29、超过30米时,x的取值范围是55x85或92.5x100【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题5、(1)A(2,0)B(0,4);(2)见解析;(3)SAOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解【详解】解:(1)让y=0时,0=2x+4解得:x=2;让x=0时,y=-20+4=4,一次函数y=2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)SAOB=12AOBO=1224=4【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标