2022年最新人教版九年级数学下册第二十七章-相似定向测评试题(名师精选).docx

上传人:可****阿 文档编号:32537909 上传时间:2022-08-09 格式:DOCX 页数:28 大小:534.15KB
返回 下载 相关 举报
2022年最新人教版九年级数学下册第二十七章-相似定向测评试题(名师精选).docx_第1页
第1页 / 共28页
2022年最新人教版九年级数学下册第二十七章-相似定向测评试题(名师精选).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年最新人教版九年级数学下册第二十七章-相似定向测评试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十七章-相似定向测评试题(名师精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两城市的实际距离为500km,在比例尺为1:10000000的地图上,则这两城市之间的图上距离为( )A0

2、.5cmB5cmC50cmD500cm2、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边cm,cm,测得边DF离地面的高度m,m,则树高AB为( )A4mB5mC5.5mD6.5m3、如图,以点O为位似中心,将ABC缩小后得到ABC,已知BB2OB,则ABC与ABC的面积之比()A1:3B1:4C1:5D1:94、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线

3、恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)5、如图,在ABC中,点D、E是AB、AC的中点,若ADE的面积是1,则四边形BDEC的面积为()A4B3C2D16、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对7、如图,与位似,点为位似中心已知,则与的面积比为( )ABCD8、若,相似比为,则与的对应角平分线的比为(

4、)A1:2B1:4C1:3D1:99、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD10、在ABC中,D,E分别是边AB,AC上的两个点,并且DEBC,AD:BD3:2,则ADE与四边形BCED的面积之比为()A3:5B4:25C9:16D9:25第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、生活中到处可见黄金分割的美如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近黄金比,可以增加视觉美感若图中b为2米,则a约为_米2、如图,小红把梯子斜靠在墙壁上,梯脚距墙2米,小红上了两节梯子到点,此时点距墙1.8米

5、,长0.6米,则梯子的长为_米3、如图,矩形中,是的中点,是线段上的动点,则的最小值是_4、九章算术是我国古代数学名著,书中有如下问题:“今有井径五尺,不知其深,立三尺木于井上,从木末望水岸,入径五寸问井深几何?”意思是:如图,井径尺,立木高尺,寸尺,则井深为_尺5、若3x7y,则_三、解答题(5小题,每小题10分,共计50分)1、如图所示,判断ABD和ABC相似吗?并说明理由2、【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACG90,BC6,若ABC固定不动,将AFG绕点A旋转,边AF、AG与边BC分别交于点D,E(点D不与点B

6、重合,点E不与点C重合)求证:AE2DEBE;求BECD的值;【拓展探究】(2)如图2,在ABC中,C90,点D,E在边BC上,BDAE30,且,请直接写出的值3、如图,中,为内部一点,且(1)求证:;(2)判断和数量关系,并说明理由4、如图是由小正方形构成的66网格,每个小正方形的顶点叫格点,圆O经过A、B两个格点,以及格线上的点C,仅用无刻度直尺在给定的网格中按要求画图(画图过程用虚线表示,画图结果用实线表示)(1)作劣弧BC的中点M;(2)在优弧BC上找一点D,使得ADBC;(3)在优弧AC上找一点E,使得5、已知:如图,ABC为锐角三角形(1)求作菱形AEDF,使得A为菱形的一个内角,

7、点D,E,F分别边BC,AB,AC上(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=AC=10,BC=8求菱形AEDF的面积-参考答案-一、单选题1、B【解析】【分析】先将千米换单位为厘米,然后设这两城市之间的图上距离为,根据比例计算即可得【详解】解:,设这两城市之间的图上距离为,则:,解得:,故选:B【点睛】题目主要考查比例的计算,理解题意,注意单位变换是解题关键2、D【解析】【分析】根据即可求得的长,进而求得树高【详解】解:依题意, cm,cm,m,m, m m故选D【点睛】本题考查了相似三角形的性质与判定,相似三角形的应用,根据题意找到相似三角形是解题的关键3、

8、D【解析】【分析】直接根据题意得出位似比,根据位似比等于相似比,进而根据面积比等于相似比的平方求得面积比【详解】解答:解:以点O为位似中心,将ABC缩小后得到ABC,BB2OB,OBOB,ABC与ABC的面积之比为:1:9故选:D【点睛】此题主要考查了位似图形的性质,正确得出位似比是解题关键4、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键

9、5、B【解析】【分析】由DE是ABC的中位线,得DEBC,且DEBC,则ADEABC,从而BC,从而解决问题【详解】解:点D、E是AB、AC的中点,DE是ABC的中位线,DEBC,且DEBC,ADEABC,ADE的面积是1,4,3,故选:B【点睛】本题考查了三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键6、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB15

10、0cm,BC180cm,AC225cm;(4)没有指明80的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似7、D【解析】【分析】根据相似比等于位似比,面积比等于相似比的平方即可求解【详解】解:与位似,点为位似中心已知,与的相似比为与的面积比为故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似比是解题的关键8、C【解析】【分析】根据相似三角形对应角平分线的比

11、等于相似比的性质解答【详解】两个三角形的相似比为,这两个三角形对应角平分线的比为故选:C【点睛】本题考查了相似三角形的性质:相似三角形对应角平分线的比等于相似比,比较简单9、A【解析】【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件10、C【解析】【分析】根据题意先判断ADEABC,再根据相似三角形的面积之比等于相似比的平方进

12、行分析计算即可得到结论【详解】解:DEBC,ADEABC,AD:BD3:2,ADE与四边形BCED的面积之比为9:16.故选:C.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方二、填空题1、1【解析】【分析】由题意得,以此进行分析计算即可得出答案【详解】解:雕像的腰部以下a与全身b的高度比值接近黄金比,ab2(1)米.故答案为:(1)【点睛】本题考查的是黄金分割的概念,注意掌握把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,其中AC=AB2、6【解析】【分析】由证明可得再代入求解即可.【详解】解:由题意得:

13、解得: 经检验符合题意; 故答案为:【点睛】本题考查的是相似三角形的运用,利用相似三角形的性质列方程是解本题的关键.3、【解析】【分析】先利用勾股定理求出的长,再根据垂线段最短可得当时,取得最小值,然后根据相似三角形的判定证出,最后根据相似三角形的性质即可得【详解】解:矩形中,是的中点,由垂线段最短可知,当时,取得最小值,在和中,即,解得,即的最小值是,故答案为:【点睛】本题考查了垂线段最短、矩形的性质、相似三角形的判定与性质等知识点,正确找出两个相似三角形是解题关键4、27【解析】【分析】根据,得到,进而得到,代入数值,求出,问题得解【详解】解:,即,解得,故井深为27尺故答案为:27【点睛

14、】本题考查了相似三角形的应用,解题的关键是根据得到5、【解析】【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答【详解】解:若3x7y,则故答案为:【点睛】此题主要考查比例的基本性质,掌握比例的性质是解题的关键三、解答题1、相似;理由见解析【解析】【分析】先求出BC=4,即可得到ABCB=BDBA=12,再由ABD=CBA,即可证明ABDCBA【详解】解:ABDCBA,理由如下:BD=1,CD=3,BC=BD+CD=4,ABCB=BDBA=12,又ABD=CBA,ABDCBA【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定条件是解题的关键2、(1)证明见解析;

15、18;(2)25318-2【解析】【分析】(1)只需要证明ABEDAE,得到AEDE=BEAE,即可推出AE2=DEBE;先证明AEB=DAC,则可证AEBDAC,推出BECD=ABCA,然后利用勾股定理求出AB=AC=32,即可得到BECD=ABCA=18;(2)设AD=3x,AE=4x,先证明ADEBDA,推出BDAB=ADAE=34,设BD=3y,AB=4y,得到DE=AEADAB=3x2y,求出AC=2y,BC=23y,则CD=BC-BD23-3y在直角ACD中,AD2=CD2+AC2,则9x2=23-32y2+4y2,即可推出x2y2=25-1239,由此求解即可【详解】解:(1)A

16、BC和AGF都是等腰直角三角形,BAC=G=90,B=C=GAF=45,又AED=NEA,ABEDAE,AEDE=BEAE,AE2=DEBE;DAC=DAE+CAE,AEB=C+CAE,C=DAE=45,AEB=DAC,又B=C,AEBDAC,BECA=ABCD,BECD=ABCA,AB=AC,BAC=90,BC=6,AB2+AC2=BC2=36,即2AB2=36,AB=AC=32,BECD=ABCA=18;(2),可设AD=3x,AE=4x,B=DAE=30,ADE=BDA,ADEBDA,ADBD=AEAB=DEAD,BDAB=ADAE=34,可设BD=3y,AB=4y,DE=AEADAB=

17、3x2y,B=30,ACB=90,AC=12AB=2y,BC=AB2-AC2=23y,CD=BC-BD23-3y在直角ACD中,AD2=CD2+AC2,9x2=23-32y2+4y2,x2y2=25-1239,DEBC=3x2y23y=3x22y2=3225-1239=25318-2【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键3、(1)见解析;(2)PA=2PC,见解析【解析】【分析】(1)利用等腰三角形的性质、三角形内角和定理以及等式的性质判断出PBC=PAB,进而得出结论;(2

18、)由(1)的结论得出PAPB=PBPC=ABBC,进而得出ABBC=2,即可得出结论【详解】(1)证明:ACB=90,AC=BC,ABC=45=PBA+PBC,又APB=135,PAB+PBA=45,PBC=PAB,又APB=BPC=135,PABPBC(2)和数量关系是PA=2PC理由如下PABPBC,PAPB=PBPC=ABBC,在RtABC中,BC=AC,AB=2BC,PAPB=PBPC=2,PA=2PB,PB=2PC,PA=2PC【点睛】本题主要考查相似三角形的判定与性质,熟练三角形内角和定理,等腰三角形的性质等知识点是解题关键,综合性较强,有一定难度4、(1)见解析;(2)见解析;(

19、3)见解析【解析】【分析】(1)如图,格点中找到点G,H,BCH中,BG:GH=1:1,则BCH的中位线在所在直线上,则点为的中点,进而根据垂径定理的推论,连接OF并延长交于点,即可求得劣弧BC的中点;(2)连接交OM于点,连接并延长交于点,连接,根据对称性即可证明ADOM,结合(1)即可证明AD/BC则点即为所求;(3)连接,结合(1)(2)先求得的垂直平分线,交于点Q,连接CQ并延长交于点,则AE=AB,点即为所求【详解】(1)如图所示,BGF=BHC,FBG=CBHBFGBCHBFBC=BGBHBFFC=1即为的中点,连接OF并延长交于点,即为所求劣弧BC的中点;(2)连接交OM于点,连

20、接并延长交于点,连接,则点即为所求;(3)连接,作的垂直平分线,交于点Q,连接CQ并延长交于点,则AE=AB,点即为所求【点睛】本题考查了无刻度直尺圆内作图,相似三角形的性质,垂径定理,等边对等角,平行线的性质,弦与弧的关系,熟练掌握以上知识是解题的关键5、(1)见解析;(2)421【解析】【分析】(1)根据菱形的对角线互相垂直平分和菱形的对角线平分内角进行作图即可;(2)先根据菱形的性质和三线合一定理得到ADBC,BD=CD=12BC=4,即可利用勾股定理求出AD的长,然后证明AEOABD,得到EOBD=AOAD=12,求出EO=12BD=2则EF=4,再根据S菱形AEDF=12ADEF求解即可【详解】解:(1)如图所示,菱形AEDF为所作(2)四边形AEDF是菱形,AD是BAC的平分线,AO=DO,ADEF,EF=2EO,又AB=AC,ADBC,BD=CD=12BC=4,在RtABD中,AD=AB2-BD2=102-42=221,EFAD,AOE=ADB=90,又EAO=BAD, AEOABD,EOBD=AOAD=12,EO=12BD=2EF=4,S菱形AEDF=12ADEF=421【点睛】本题主要考查了菱形的性质,相似三角形的性质与判定,三线合一定理,勾股定理,尺规作图作角平分线,作线段垂直平分线,解题的关键在于能够熟练掌握相关知识进行求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁