人教版九年级数学下册第二十七章-相似同步练习试题(名师精选).docx

上传人:可****阿 文档编号:32554324 上传时间:2022-08-09 格式:DOCX 页数:34 大小:932.38KB
返回 下载 相关 举报
人教版九年级数学下册第二十七章-相似同步练习试题(名师精选).docx_第1页
第1页 / 共34页
人教版九年级数学下册第二十七章-相似同步练习试题(名师精选).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《人教版九年级数学下册第二十七章-相似同步练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十七章-相似同步练习试题(名师精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB2m,BC12m,则建筑物CD的高度为( )

2、A10.5mB10mC9mD11m2、如图,某学生利用标杆测量一棵大树的高度,如果标杆EC的高为2m,并测得,那么树DB的高度是( )A6mB8mC32mD25m3、如图,在RtABC中,C90,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD4、若,相似比为,则与的对应角平分线的比为( )A1:2B1:4C1:3D1:95、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边cm,cm,测得边DF离地面的高度

3、m,m,则树高AB为( )A4mB5mC5.5mD6.5m6、在小孔成像问题中,如图所示,若点O到的距离是,点O到的距离是,则像的长与物体长的比是( )ABCD7、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD8、下列可以判定ABCABC的条件是()AABCB且ACC且AAD以上条件都不对9、如图,BC2,则AB的长为( )A6B5C4D310、如图,在ABC中,AC=3,BC=6,D为BC边上的一点,且BAC=ADC若ADC的面积为a,则ABC的面积为()ABCD第卷(非选择题 70分)二、填空

4、题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点在第一象限内,点在轴正半轴上,是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,则点的坐标为 _2、如图,在矩形ABCD中,AB30,BC40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F若PDF为直角三角形,则PD的长为_3、如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作ACAB交x轴于点C,点M为线段BC的中点,则PM的最小值为 _4、如图,在ABC中,D、E分别是边BC、AC

5、上的点,AD与BE相交于点F,若E为AC的中点,BD:DC2:3,则AF:FD的值是 _5、将2020个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3A2020和点M,M1,M2M2019是正方形的顶点,连接AM1,AM2,AM3AM2019分别交正方形的边A1M,A2M1,A3M2A2019M2018于点N1,N2,N3N2019,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,则S2019为 _三、解答题(5小题,每小题10分,共计50分)1、如图1,在ABC中,ABAC2,BAC120,点D、E分别是AC、BC的中点,连接DE(1)探索发现:图1中,

6、的值为 ,的值为 (2)拓展探究若将CDE绕点C旋转,在旋转过程中的大小有无变化?请仅就图2的情形给出证明(3)问题解决当CDE旋转至A,D,C三点共线时,直接写出线段BE的长2、有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角(1)已知RtABC为智慧三角形,且RtABC的一边长为,则该智慧三角形的面积为 ;(2)如图,在ABC中,C105,B30,求证:ABC是智慧三角形;(3)如图,ABC是智慧三角形,BC为智慧边,B为智慧角,A(3,0),点B,C在函数上()的图象上,点C在点B的上方,且点B的纵坐标为当ABC是直角三角形时,求k的值3、图、图

7、均是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留适当的作图痕迹,不要求写出画法(1)在图中的线段上找一点,连结,使(2)在图中的线段上找一点,连结,使4、如图,在等腰直角中,过点作射线,为射线上一点,在边上(不与重合)且,与交于点(1)求证:;(2)求证:;(3)如果,求证:5、如图,在中,平分交于D(1)求证:(2)若,求的长-参考答案-一、单选题1、A【解析】【分析】直接利用已知得出ABEACD,再利用相似三角形的性质得出答案【详解】解:由题意可得:BEDC,则ABEACD,故,标杆BE高1.

8、5m,AB=2m,BC=12m,解得:DC=10.5m故选:A【点睛】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键2、B【解析】【分析】根据三角形ACE与三角形ABD相似,得到对应边成比例,建立等式求解【详解】解:由题意可得,CEBD,即解得BD8m,故选B【点睛】本题考查了相似三角形的判定与性质,在三角形中一平行线平行于第三边,则这个平行线所截的小三角形与原三角形相似,相似三角形对边边成比例3、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90,AB1

9、0,BC8,由勾股定理得,BD平分ABC,QBDABD,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键4、C【解析】【分析】根据相似三角形对应角平分线的比等于相似比的性质解答【详解】两个三角形的相似比为,这两个三角形对应角平分线的比为故选:C【点睛】本题考查了相似三角形的性质:相似三角形对应角平分线的比等于相似比,比较简单5、D

10、【解析】【分析】根据即可求得的长,进而求得树高【详解】解:依题意, cm,cm,m,m, m m故选D【点睛】本题考查了相似三角形的性质与判定,相似三角形的应用,根据题意找到相似三角形是解题的关键6、B【解析】【分析】由题意可知与是相似三角形,相似比为1:3,故CD:AB=1:3【详解】由小孔成像的定义与原理可知与高的比为6:18=1:3与相似比为1:3CD:AB=1:3故选:B【点睛】本题考查了相似三角形的性质,用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都

11、等于相似比7、C【解析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质8、C【解析】【分析】根据相似三角形的判定定理可得出答案【详解】A、只有一组角对应相等的两个三角形不一定相似;故A不符合题意;B、两边对应成比例,但夹角不相等的两个三角形不一定相似,故B不符合题意;C、两边对应成比例且夹角相等的两个三角形相似,故C符合题意;故选:C【点睛】本题考查了相似三角形的判定定理,熟练掌握定理内容是解题的关键9、C【解析】【

12、分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键10、A【解析】【分析】证得ABCDAC后由面积比为相似比的平方即可求得ABC的面积【详解】BAC=ADC,C=CABCDAC又AC=3,BC=6AC:BC=1:2ABCDAC相似比为2:1则ABCDAC面积比为4:1DAC的面积为aABC的面积为4a故选:A【点睛】本题考查了相似三角形判断及性质,相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等

13、于相似比,相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方二、填空题1、【解析】【分析】根据位似变换的性质计算即可【详解】解:是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,点的坐标为,即点的坐标为,故答案为:【点睛】本题考查位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,则位似图形对应点的坐标的比等于k或-k2、5或【解析】【分析】分情况进行讨论,当DPF=90时,过点O作OHAD于H,先证DHODAB,得到,求出,证明HOP=HPO=45,得到OH=PH=15,则PD=HD-PH=5;当PFD=90时,先求出,得到,从

14、而得到DAO=ODA;证明OFEBAD,推出,则,最后证明PDFBDA,则【详解】解:如图1所示,当DPF=90时,过点O作OHAD于H,HPF=90,四边形ABCD是矩形,BD=2OD,BAD=OHD=90,AD=BC=40,OHAB,DHODAB,由折叠的性质可得:,HOP=45,HOP=HPO=45,OH=PH=15,PD=HD-PH=5;如图2所示,当PFD=90时,OFE=90,四边形ABCD是矩形,BCD=90,CD=AB=30, ,DAO=ODA,由折叠的性质可知:AO=EO=25,PEO=DAO=ODA,又OFE=BAD=90,OFEBAD,PFD=BAD,PDF=BDA,PD

15、FBDA,综上所述,当PDF为直角三角形,则PD的长为5或,故答案为:5或【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件3、【解析】【分析】连接,根据直角三角形斜边中线等于斜边一半可得:,则点在线段的垂直平分线上,作线段的垂直平分线交轴,轴于点,则当时,最小,再利用相似三角形的判定和性质,结合勾股定理解答即可【详解】如图:过点作于点,连接,为中点,点在线段的垂直平分线上作线段的垂直平分线交轴,轴于点,当,最小连接,则(,4),设,则,即,(,)在中当时, 最小故答案为:【点睛】本题考查了线段垂直平分线的判定和

16、性质,直角三角形的性质,相似三角形的判定和性质,点到直线的距离,勾股定理等知识,能够综合熟练运用这些性质和判定是解题关键4、#2.5【解析】【分析】过D作DHAC交BE于H,根据相似三角形的性质即可得到结论【详解】解:过D作DHAC交BE于H,DHFAEF,BDHBCE,若E为AC的中点,CEAE,BD:DC2:3,BD:BC2:5,DF:AF2:5,AF:FD故答案为:【点睛】本题考查了三角形相似的判定和性质,合理添加辅助线,正确选择比例式是解题的关键5、【解析】【分析】设左边第一个正方形左上角的顶点为O,先判定M1MN1M1OA,利用相似三角形的性质求出MN1的长,进而得出S1,同理得出S

17、2,按照规律得出Sn,最后n取2019,计算即可得出答案【详解】解:如图所示,设左边第一个正方形左上角的顶点为O将2019个边长为1的正方形按如图所示的方式排列OAMA1M1A2M2A3M2018A2019M1MN1M1OAMN1=,四边形M1N1A1A2的面积是S1=;同理可得:四边形M2N2A2A3的面积S2=;四边形MnNnAnAn+1的面积Sn=S2019=;故答案为:【点睛】本题考查了相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键三、解答题1、(1),;(2)无变化,理由见解析;(3)或【解析】【分析】(1)连接,先根据等腰三角形的性质可得,再根据直角

18、三角形的性质、勾股定理可得,然后根据线段中点的定义即可得;(2)先求出,从而可得,再根据旋转的性质可得,从而可得,然后根据相似三角形的判定证出,最后根据相似三角形的性质即可得出结论;(3)分绕点逆时针旋转,绕点逆时针旋转两种情况,分别根据线段的和差即可得【详解】解:(1)如图,连接,点分别是的中点,故答案为:,;(2)无变化,理由如下:由(1)知,由旋转的性质得:,即,在和中,即的大小不变;(3)由题意,分以下两种情况:如图,当绕点逆时针旋转时,三点共线,由(1)知,则;如图,当绕点逆时针旋转时,三点共线,由(1)知,综上,线段的长为或【点睛】本题考查了等腰三角形的性质、含角的直角三角形的性质

19、、旋转的性质、相似三角形的判定与性质等知识点,较难的是题(2),正确找出两个相似三角形是解题关键2、(1)或1或或或;(2)见解析;(3)【解析】【分析】(1)由于不确定是哪条边的边长,故需分3种情况讨论每种情况中,不确定长的边是否为智慧边,故又需要分类讨论(2)过作边的垂线,构造两个有特殊角的直角三角形,即能用把各边关系表示出来,易得是AC的倍(3)由题意可知,因此当为直角三角形时,不可能为斜边,即只分或两种情况讨论作辅助线构造三垂直模型,证得相似或全等三角形,再利用对应边的关系把、的坐标表示出来,再代入计算【详解】解:(1)如图1,设,若,则,若,即,则若,若,若,故答案为:或1或或或(2

20、)证明:如图2,过点作于点,在中,中,是智慧三角形(3)是智慧三角形,为智慧边,为智慧角是直角三角形,不可能为斜边,即或当时,过作轴于,过作于,过作轴于,如图3,设,则的纵坐标为,即,点、在在函数上的图象上,解得:(舍去),当时,过作轴于,过作轴于,如图4,设,则,点、在在函数上的图象上,解得:综上所述,的值为或【点睛】本题考查了新定义的理解和运用,解直角三角形,相似和全等三角形的判定和性质,反比例函数的性质,分类讨论思想解题关键是理解新定义并运用其性质转化条件,在直角坐标系中把已知直角构造在三垂直模型里是通常办法3、(1)见解析;(2)见解析【解析】【分析】(1)找出所在的矩形ACBE,然后

21、连接CE,交AB于点D,根据矩形的对角线相等且互相平分即可证明,即点D即为所求;(2)取格点D、F,连接DF,交AB于点E,连接CE,根据相似三角形的判定及性质可得:,根据勾股定理求出,由线段比例可得:,得出,由等边对等角即可得出两个角相等,即点即为所求【详解】解:(1)如图1,找出所在的矩形ACBE,然后连接CE,交AB于点D,即为所求; 四边形ACBE为矩形,点D符合题意;(2)如图2,取格点D、F,连接DF,交AB于点E,连接CE,点即为所求,在中,点E符合题意【点睛】本题考查作图-应用与设计作图,包括矩形的性质,相似三角形的判定和性质,等腰三角形的性质等,理解题意,熟练掌握运用这些知识

22、点作出相应图形是解题关键4、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角ABC得到BAC=B=45,从而结合DAE=45得到DAC=EAB,再由平行线的性质得到ACP=BAC=B=45,从而得到ADCAEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合DAE=CAB=45得证结果;(3)根据题意结合ACD=45和ACB=90,由CD=CE得到CDE=CED=22.5,从而得到DAC=22.5,然后得到OCDDCA,最后即可求证【详解】解:(1)证明:是等腰直角三角形,BAC=B=45,DAE=45,PCAB

23、,DAC=EAB,ACD=BAC=B=45,ADCAEB;(2)证明:ADCAEBADAE=ACAB,即ADAC=AEAB,DAE=BAC=45,ADEACB;(3)ACD=45,ACB=90,CDE+CED=180-90-45=45,CDE=CED=22.5,ADEACB,ADE=ACB=90,CAD=180-ADE-CDE-ACD=180-90-22.5-45=22.5CAD=CDE,又OCD=DCA,OCDDCA,OCCD=CDCA,【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似5、(1)见解析;(2)【解析】【分析】(1)由,得,由平分得,故可证;(2)设,则,由相似三角形的性质即可得出答案【详解】(1),平分,DBC=A;(2)设,即,解得:或(负值不合题意,舍去),【点睛】本题考查相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁