最新人教版九年级数学下册第二十七章-相似定向攻克练习题.docx

上传人:知****量 文档编号:28185564 上传时间:2022-07-26 格式:DOCX 页数:34 大小:530.74KB
返回 下载 相关 举报
最新人教版九年级数学下册第二十七章-相似定向攻克练习题.docx_第1页
第1页 / 共34页
最新人教版九年级数学下册第二十七章-相似定向攻克练习题.docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《最新人教版九年级数学下册第二十七章-相似定向攻克练习题.docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十七章-相似定向攻克练习题.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若且,则的值是( )ABCD2、下列命题中, 说法正确的是( )A所有菱形都相似B两边对应成比例且有一组角对应相

2、等的两个三角形相似C三角形的重心到一个顶点的距离, 等于它到这个顶点对边距离的两倍D斜边和直角边对应成比例, 两个直角三角形相似3、已知点C是线段AB的黄金分割点,且ACBC,若AB2,则BC的值为( )A3B1C1D24、如图,在平面直角坐标中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数y(k0)的图象过点A并交AD于点G,连接DF若BE:AE1:2,AG:GD3:2,且FCD的面积为,则k的值是()AB3CD55、如图,已知矩形ABCD中,AB3,BE2,EFBC若四边形EFDC与四边形BEFA相似而不全等,则CE的值为( )AB6CD96、如图,直线l1l

3、2,直线AB、CD相交于点E,若AE4,BE8,CD9,则线段CE的长为()A3B5C7D97、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对8、如图,在ABC中,点D、E分别是AB、AC的中点,若ABC的面积为16,则四边形BCED的面积为( )A8B12C14D169、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,

4、则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个10、如图,在面积为144的正方形ABCD中放两个正方形BMON和正方形DEFG,重合的小正方形OPFQ的面积为4,若点A,O,G在同一直线上,则阴影部分面积为( )A36B40C44D48第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小红把梯子斜靠在墙壁上,梯脚距墙2米,小红上了两节梯子到点,此时点距墙1.8米,长0.6米,则梯子的长为_米2、在等腰ABC中,AB=AC,ADBC于D,G是重心,若A

5、G=9cm,则GD=_cm3、如图,在平面直角坐标系中,等边ABC与等边BDE是以原点为位似中心的位似图形,且相似比为,点A、B、D在x轴上,若等边BDE的边长为6,则点C的坐标为 _4、如图,直线yx+2与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P有 _个5、如图,在RtABC中,C90正方形EFCD的三个顶点E,F,D分别在边AB,BC,AC上已知AC15,BC5,则正方形的边长为_ 三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC中,ACB90,AC4cm,BC3cm,以

6、AC为边向右作正方形ACDE,点P从点C出发,沿射线CD以1cm/s的速度向右运动,过点P作直线l与射线BA交于点Q,使得BPQB,设运动时间为t(s),BPQ与正方形ACDE重合部分的面积为S(cm2)(1)当直线l经过点E时,t的值为 (2)求S关于t的函数关系式,并直接写出自变量t的取值范围2、定义:点P与图形W上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形W的距离,记为d(P,图形W)例如,在图1中PA13,则d(P,图形W)3特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)0(1)概念理解:如图2,在直角坐标系xOy中,点O是坐标原点,点

7、A在x轴正半轴上,点B在第一象限,且AOB60若M(0,2),N(1,0),则d(M,AOB) ,d(N,AOB) 若点P是O内一点,O的半径是5,OP3,则d(P,O) (2)灵活运用:如图3,已知点A(4,4),B(7,8)点P是y轴上的一动点当d(P,射线AB)6时,求点P的坐标;(3)深入思考:如图4,边长为1的正方形ABCD,绕其顶点A(1,0)顺时针旋转,点P(m1,2m6)是平面内一点在正方形旋转过程中,记d(P,正方形ABCD)的最大值、最小值分别为:d1、d2,则d1+d2 3、如图,是矩形的对角线,过点作于点,分别与的延长线,交于点、,连接(1)求证:(2)若,求的长4、如

8、图,ACBD,AB与CD相交于点O,OC2OD若SAOC36,求SBOD5、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_-参考答案-一、单选题1、D【解析】【分析】将用表示出来,得到,再将求出的结果与联立求出的值 ,最后把所求的代入所求的代数式即可求解【详解

9、】解:,解,得, ,故选:D【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示是解题的关键2、D【解析】【分析】根据相似多边形的性质,相似三角形的判定,三角形重心的性质逐项分析判断即可【详解】解:A. 所有菱形不一定相似,故该选项不正确,不符合题意;B. 两边对应成比例且夹角对应相等的两个三角形相似,故该选项不正确,不符合题意;C. 三角形的重心到一个顶点的距离, 等于它到这个顶点对边中点距离的两倍,故该选项不正确,不符合题意;D. 斜边和直角边对应成比例, 两个直角三角形相似,故该选项正确,符合题意;故选D【点睛】本题考查了相似多边形的性质,相似三角形的判定,三角形重

10、心的性质,掌握以上知识是解题的关键3、A【解析】【分析】根据黄金分割点的定义,知是较长线段;则,代入数据即可得出的长度即可【详解】解:由于点C为线段的黄金分割点,且是较长线段;则,BC=AB-AC=2-()=3-故选:A【点睛】本题考查了黄金分割点的概念,解题的关键是熟记黄金比的值进行计算4、B【解析】【分析】过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,可得DGNDAM, ,再由BE:AE1:2,AG:GD3:2,可得到, ,从而得到 ,进而得到 ,继而,再由平行四边形的性质,可得BOFDNG,从而得到 ,再由,即可求解【详解】解:如图,过点A作AMx轴于点M,GNx

11、轴于点N,设点 ,则AM=b,OM=a,AMNG,AMy轴,DGNDAM, , ,BE:AE1:2,AG:GD3:2, , , , ,点A、G在反比例函数y(k0)的图象上, , , , , ,四边形ABCD是平行四边形,OBF=GDN,BOF=GND=90,BOFDNG, ,即, , , ,解得: , 故选:B【点睛】本题主要考查了相似三角形的性质和判定,反比例函数的几何意义,平行四边形的性质,熟练掌握相关知识点是解题的关键5、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可【详解】解:设CE=x,四边形EFDC与四边形BE

12、FA相似,AB=3,BE=2,EF=AB,解得:x=4.5,故选:A【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEFA相似得到比例式6、A【解析】【分析】根据直线l1l2,可证ACEBDE,可以推出,则,即可得到CE=3【详解】解:直线l1l2,ACEBDE,CE=3,故选A【点睛】本题主要考查了相似三角形的性质与判定,解题的关键在于能够根据题意证明ACEBDE7、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10c

13、m,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)没有指明80的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似8、B【解析】【分析】直接利用三角形中位线定理得出DEBC,DE=BC,再利用相似三角形的判定与性质得出即可【详解】解:在ABC中,点D、E分别是AB、AC的中点,DEBC,DE=BC,ADE=B,AED=C,ADEABC,=,SABC=

14、16,S四边形BCED= SABC-SADE=16-4=12故选B【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC是解题关键9、C【解析】【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关

15、键10、D【解析】【分析】先求出AB=12,OQ=2,设正方形BMON的边长为x,则AN=12-x,NO=x,QG=12-x,然后证明ANOOQG,得到,即,求出x=8,由此即可求解【详解】解:正方形ABCD的面积为144,正方形OPFQ的面积为4,AB=12,OQ=2,设正方形BMON的边长为x,则AN=12-x,NO=x,QG=12-x,四边形BMON和四边形OPFQ都是正方形,ANO=BNO=OQF=OQG=POQ=90,ANOQ,NAO=QOG,ANOOQG,即,解得:或(舍去),BN=8,EF=12-x+2=6,阴影部分面积=144-82-62+4=48,故选D【点睛】本题主要考查了

16、正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件二、填空题1、6【解析】【分析】由证明可得再代入求解即可.【详解】解:由题意得: 解得: 经检验符合题意; 故答案为:【点睛】本题考查的是相似三角形的运用,利用相似三角形的性质列方程是解本题的关键.2、4.5【解析】【分析】由三角形的重心的性质即可得出答案【详解】解:AB=AC,ADBC于D,AD是ABC的中线,G是ABC的重心,AG=2GD,AG=9 cm,GD=4.5cm,故答案为:4.5【点睛】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的

17、距离等于它到对边中点距离的两倍3、【解析】【分析】作CFAB于F,根据位似图形的性质得到BCDE,根据相似三角形的性质求出OA、AB,根据等边三角形的性质计算,得到答案【详解】解:作CFAB于F,等边ABC与等边BDE是以原点为位似中心的位似图形,BCDE,OBCODE,ABC与BDE的相似比为,等边BDE边长为6,解得,BC=2,OB=3,OA=1,CA=CB,CFAB,AF=1,由勾股定理得,OF=OA+AF=2,点C的坐标为故答案为:【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键4、3【解析】【分析】根据直线与坐标轴的交点,得

18、出A,B的坐标,再利用三角形相似得出圆与直线相切时的坐标,进而得出相交时的坐标【详解】解:直线yx+2与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),A点的坐标为:(2,0),B点的坐标为:(0,2),AB2,将圆P沿x轴向左移动,当圆P与该直线相切于C1时,P1C11,AC1P1=AOB=90,C1AP1=OAB,AP1C1ABO,即AP1,P1的坐标为:(2+,0),将圆P沿x轴向左移动,当圆P与该直线相切于C2时,P2C21,同理AP2C2ABO,AP2,P2的坐标为:(2,0),从2到2+,整数点有1,2,3,故横坐标为整数的点P的个数是,3个故答案为:3【点睛】本题考查了

19、一次函数综合题,涉及的知识有:一次函数的图象与性质,切线的性质,一次函数与坐标轴的交点,以及坐标与图形性质,熟悉一次函数的性质和切线的性质是解题的关键5、#【解析】【分析】根据正方形的性质和相似三角形的判定方法可知,可得到关于正方形边长的比例式,代入数值计算即可【详解】解:,四边形是正方形,AED=B,ADE=C=90,若设正方形的边长为,ED=CD=x,又AC15,BC5,AD=AC-CD=15-x,解得:,则正方形的边长为故答案为【点睛】本题考查了正方形的性质、相似三角形的判定和性质,解一元一次方程,解题的关键是注意图形中的相等线段的替换三、解答题1、(1)7;(2)S=23t2(0t3)

20、4t-6(3t4)-23t2+283t-503(47)【解析】【分析】(1)根据正方形的性质可证得EPDABC(AAS),即可求得答案;(2)分三种情况:当0t3时,如图2,设PQ与AC交于点F,由FPCABC,可求得FC=43t,再运用三角形面积公式即可;当3t4时,如图3,设PQ与AE交于点G,过点A作AFPQ交CD于点F,先证明四边形AFPG是平行四边形,再证明AFCABC(AAS),即可求得答案;当4t7时,如图4,PQ交AE于G,交DE于H,由PHDGHE,ABCHPD,SS正方形ACDESEGH,即可求得答案;当t7时,S16【详解】(1)四边形ACDE是正方形,CPtcm,ACD

21、CDE90,ACCDDE4cm,直线l经过点E,BPQB,EPDABC(AAS),PDBC3cm,CPCD+PD4+37(cm),t7,故答案为:7;(2)当0t3时,如图2,设PQ与AC交于点F,FCPACB90,FPCABC,FPCABC,FCCP=ACBC,即FCt=43,FC=43t,S=12CPFC=12t43t=23t2;当3t4时,如图3,设PQ与AE交于点G,过点A作AFPQ交CD于点F,四边形ACDE是正方形,AECD,四边形AFPG是平行四边形,AFPQ,AFCBPQ,BPQABC,ACFACB90,ACAC,AFCABC(AAS),CFCB3cm,FPCPCF(t3)cm

22、,S=SAFC+SAFPG=12CFAC+FPAC=1234+4(t-3)=4t-6;当4t7时,如图4,PQ交AE于G,交DE于H,四边形ACDE是正方形,PDHE90,PHDGHE,PHDGHE,DPGE=DHEH,即t-4GE=DHEH,ACBHDP90,ABCHPD,ABCHPD,DHDP=ACBC,即DHt-4=43,DH=43(t-4),EH=DE-DH=4-43(t-4)=-43t+283,GEEH=DPDH=34,GE=34(-43t+283)=-t+7,S=S正方形ACDE-SEGH=16-12(-t+7)(-43t+283)=-23t2+283t-503;当t7时,S16;

23、综上所述,S=23t2(0t3)4t-6(3t4)-23t2+283t-503(47)【点睛】本题考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握相关知识点是解决问题的关键2、(1)1,1;2;(2)P(0,42)或(0,);(3)【解析】【分析】(1)求点M到OB的垂线段的长;根据“点P到图形W的距离”的定义求解即可;(2)圆内一点到圆上最小距离是,这点与圆心的形成的半径减去这点与圆心的距离;(2)作BCAD于C,分为点P在CD的下方时和P在CD上方时两种情形,当点P在CD的下方时,由d(P,射线AB)=PA=6,根据勾股定理求得DP,进而求得点P坐标,当P在CD上方时

24、,作AEAB交y轴于E,先证明ADEBCA,作PHAB,证明PGHEDA,进一步求得P点坐标【详解】解:(1)如图1,作MPOB于P,OPM90,OM2,POM90AOB30,PM,d(M,AOB)1,ON1,d(N,AOB)1,故答案是:1,1;如图2,PQOQOP2,d(P,O)2,故答案是:2;(2)如图3,点A(4,4),B(7,8),AB5,设直线AB的解析式是 把A(4,4),B(7,8)代入,得 直线AB的解析式是:,作BCAD于C,当点P在CD的下方时,d(P,射线AB)PA6,DP2,OPPDOD24,P(0,42),当P在CD上方时,作AEAB交y轴于E,EABADEC90

25、,EAD+BAC90,DEA+DAE90,AEDBAC,BCAD4,ADEBCA(AAS),AEAB5,DEAC3,作PHAB于H,作HGOD于G,PHAE,GPHAED,PGHEDA, ,PG,GH,当x时,y,OG,OPOG+PG,P(0,),综上所述:P(0,42)或(0,);(3)如图4,令xm1,y2m6,y2x4,记作直线MN,其中M(2,0),N(0,4),MN2,以A为圆心,AC长为半径作圆A,作AHNM于H,直线AH交圆O于E和F,AD1,ACAMHOMN,AHMMON90,AHMNOM,AH,EHAHAE,FHAF+AH,d1FH,d2EH,d1+d2,故答案是:【点睛】本

26、题在理解的基础上,转化运用了全等三角形的判定和性质,相似三角形的判定和性质,一次函数及其图象性质,解直角三角形等知识,解决问题的关键是理解题意,转化题意,熟练运用有关基本知识3、(1)见解析;(2)AB=3+5【解析】【分析】(1)根据矩形的定义得AD=BC,证明ADFBAC,根据相似三角形的性质即可得出结论;(2)由(1)的结论得BC=2AB证明ADFBGF,利用相似三角形的性质得AFBG=ADBF,根据AD=BC,BG=AB,BF=AB-BF,得出关于的方程,解方程即可求解【详解】(1)证明:四边形是矩形,AD=BC,DAF=ABC=90,ADF+AFD=90,于点,BAC+AFD=90,

27、BAC=ADF,ADFBAC,AFBC=ADAB,ADBC=AFABAD=BC,;(2)解:由(1)得,BC=2AB,四边形是矩形,ADFBGF,AFBF=ADBG,AFBG=ADBF,AD=BC=2AB,BG=AB,BF=AB-AF=AB-2,2AB=2ABAB-2,两边平方整理得:AB2-6AB+4=0,AB=3+5或3-5(不合题意,舍去),AB=3+5【点睛】本题考查了相似三角形的判定和性质,矩形的性质,证明三角形相似是解本题的关键4、9【解析】【分析】根据ACBD,可证AOCBOD,则SBODSAOC=ODOC2,由此求解即可【详解】解:ACBD,AOCBOD,SBODSAOC=OD

28、OC2,又OC2OD,SBODSAOC=ODOC2=14,SBOD=14SAOC=9【点睛】本题主要考查了相似三角形的性质与判定,熟练掌握两个相似三角形的面积之比等于相似比的平方是解题的关键5、(1)(4,2);(2)见解析;(3)【解析】【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁