《2022年必考点解析北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线ab,直线ABAC,若152,则2的度数是()A38B42C48D522、如图,在ABC中,ACB
2、=90,CAB=30,AC=63,D为AB上一动点(不与点A重合),AED为等边三角形,过D点作DE的垂线,F为垂线上任意一点,G为EF的中点,则线段BG长的最小值是( )A23B6C33D93、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个4、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D305、等腰三角形的顶角是,则这个三角形的一个底角的大小是( )ABCD6、如图,于点,与交于点,若,则等于( )A20B50C70D1107、已知等腰三角形两边
3、的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D198、如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30角,这棵树在折断前的高度为()A米B米C4米D6米9、如图,在ABC中,AB=AC,BAC=120,D是BC的中点,连结AD,AE是BAD的平分线,DFAB交AE的延长线于点F,若EF=3,则AE的长是( )A3B6C9D1210、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D0第卷(非选择题 7
4、0分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC是等边三角形,点E在AC的延长线上,点D在线段AB上,连接ED交线段BC于点F,过点F作于点N,若,则AN的长为_2、如图,ADBC,1B,C=65,BAC_3、在平面直角坐标系中,AOB是等边三角形,点的坐标为(2,0),将AOB绕原点逆时针旋转,则点的坐标为_4、如图,点P在四边形ABCD中,PA平分,设,则与满足的数量关系是_5、在ABC中,AB=AC,BD平分ABC交AC于D,DE垂直平分AB,垂足为E,则C=_三、解答题(5小题,每小题10分,共计50分)1、如图,在长方形ABCD中,AB=4,BC=6延长BC到点E,
5、使CE=3,连接DE动点P从点B出发,沿着以每秒1个单位的速度向终点E运动,点P运动的时间为秒(1)DE的长为 ;(2)连接AP,求当为何值时,ABPDCE;(3)连接DP,求当为何值时,PDE是直角三角形;(4)直接写出当为何值时,PDE是等腰三角形2、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等
6、分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB3、在ABC中,B=90,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当BAC=50时,则AED=_;(2)当时,如图2,连接AD,判断AED的形状,并证明;如图3,直线CF与ED交于点F,满足CFD=CAEP为直线CF上一动点当PE-PD的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明4、如图,点C是线段AB上一点,ACF与BCE都是等边三角形,连接AE,BF(1)求证:AE=BF;(2)若点M
7、,N分别是AE,BF的中点,连接CM,MN,NC依题意补全图形;判断CMN的形状,并证明你的结论5、如图,ABC中,ABC45,F是高AD和高BE的交点,AC,BD2求线段DF的长度 -参考答案-一、单选题1、A【分析】利用直角三角形的性质先求出B,再利用平行线的性质求出2【详解】解:ABAC,152,B901905238ab,2B38故选:A【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键2、B【分析】连接,设交于点,先判定为线段的垂直平分线,再判定,然后由全等三角形的性质可得答案【详解】解:如图,连接,设交于点,为的中点,
8、点在线段的垂直平分线上,为等边三角形,点在线段的垂直平分线上,为线段的垂直平分线,点在射线上,当时,的值最小,如图所示,设点为垂足,则在和中,解得:,故选:B【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键3、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解
9、题的关键4、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键5、A【分析】根据等腰三角形的两底角相等,即可求解【详解】解
10、:等腰三角形的顶角是,这个三角形的一个底角的大小是 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键6、C【分析】由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数【详解】解:,故选:C【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键7、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【
11、点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键8、D【分析】根据直角三角形中30角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度【详解】解:如图,根据题意BC2米,BAC30,AB2BC224米,2+46米故选:D【点睛】本题主要考查了含30度角的直角三角形的性质,比较简单,熟记性质是解题的关键9、B【分析】根据等腰三角形三线合一的性质可得,再根据角平分线,求出,然后根据平行线的性质求出,从而得到,最后根据直角三角形角所对的直角边等于斜边的一半即可解
12、答【详解】解:,AD是的中线,AE是的角平分线, 在中,故选B【点睛】本题考查等腰三角形的判定和性质,角平分线的性质,平行线的性质,直角三角形30角所对的直角边等于斜边的一半的性质,利用数形结合的思想是解题关键10、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直
13、角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键二、填空题1、22【分析】作DGAC交BC于G,证明DFGEFC,设,则,根据求出的值和等边三角形的边长,进而可求AN的长【详解】解:作DGAC交BC于G,是等边三角形,DGB=ACB=60,DGF=ECF,DFG=EFC,DFGEFC,DGB=ACB=60,是等边三角形,设,则,则,AN的长为27-5=22,故答案为:22【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,直角三角形的性质,解题关键是恰当作辅助线构建全等三角形,利用全等得出线段之间的关系求解2、70【分析】先根据ADBC可知ADBADC90,再根据直角三角
14、形的性质求出1与DAC的度数,由BAC1+DAC即可得出结论【详解】ADBC,ADBADC90,DAC906525,1B45,BAC1+DAC45+2570【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180是解答此题的关键3、【分析】过点作Dy轴于D,根据等边三角形的三线合一的性质求出OD=1,利用勾股定理求出D即可得到点的坐标【详解】解:由旋转可得OABO,过点作Dy轴于D,ABC是等边三角形,OD=D=1, ,点的坐标为,故答案为:【点睛】此题考查了等边三角形的性质,等腰三角形三线合一的性质,勾股定理,直角坐标系中点的坐标的表示,正确掌握等边三角形的性质及等腰三角形的性质是
15、解题的关键4、【分析】连接AC,延长BP交AC于点E,证明BP垂直平分AC,得到,连接BD,延长AP交BD于F,证明ABD关于AP对称,得出ABE=,由此得到答案【详解】解:如图,连接AC,延长BP交AC于点E,AB=BC,点B在线段AC的垂直平分线上,AP=PC,点P在线段AC的垂直平分线上, BP垂直平分AC,连接BD,延长AP交BD于F,AB=AD,PA平分,ABD关于AP对称,BP=DP,ABE=,即,故答案为:【点睛】此题考查线段垂直平分线的判定及性质,等腰三角形三线合一的性质,正确掌握垂直平分线的判定定理及等腰三角形三线合一的性质是解题的关键5、7272度【分析】由角平分线的定义可
16、知ABC=21,由等腰三角形的性质得C=ABC,由垂直平分线的性质得A=1,然后根据三角形内角和求解即可【详解】解:BD平分ABC,ABC=21AB=AC,C=ABC=21DE垂直平分AB,AD=BD,A=1A+ABC+C=180,1+21+21=180,1=36,C=21=72故答案为:72【点睛】本题考查了角平分线的定义,等腰三角形的性质,以及线段垂直平分线的性质等知识,熟练掌握相关性质是解答本题的关键三、解答题1、(1)5;(2)秒时,ABPDCE;(3)当秒或秒时,PDE是直角三角形;(4)当秒或秒或秒时,PDE为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根
17、据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在RtDCE中,故答案为:5;(2)如图所示:当点P到如图所示位置时,ABPDCE,ABPDCE,仅有如图所示一种情况,此时,秒时,ABPDCE;(3)当时,如图所示:在RtPDE中,在RtPCD中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,PDE是直角三角形;(4)若
18、PDE为等腰三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示:,在RtPDC中,即,解得:,;综上可得:当秒或秒或秒时,PDE为等腰三角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键2、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解3、(1)80;(2)是等边三角形;(3)【分析】(
19、1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30直角三角形性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、
20、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【点睛】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形4、(1)证明见解析;(2)补全图形见解析;是等边三角形,证明见解析【分析】(1)由等边三角形的性质可知,结合题意易得出即可利用“SAS”证明,即得出;(2)根据题意补全图形即可;由全等三角形的性质可知,再由题意点M,N分别是AE,BF的中点,即得出即可利用“SAS”
21、证明,得出结论,最后根据,即得出,即可判定是等边三角形(1)与都是等边三角形,即,在和中,(2)画图如下:是等边三角形理由如下:,点M,N分别是AE,BF的中点,在和中,即,是等边三角形【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点利用数形结合的思想是解答本题的关键5、1【分析】由勾股定理可求CD1,由“AAS”可证BFDACD,可得CDDF1【详解】解:AD和BE是ABC的高,ADBADCBEC90CDAC90;CDBF90DAC DBFABC45,DAB45ABCDABDADB 在ADC与BDF中,ADCBDF(ASA) ACBF在RtBDF中,BDF90, BD2DF2BF2BD2,BF,DF1 【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,掌握全等三角形的判定定理是本题的关键