2022年最新北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx

上传人:知****量 文档编号:28181124 上传时间:2022-07-26 格式:DOCX 页数:34 大小:1.07MB
返回 下载 相关 举报
2022年最新北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx_第1页
第1页 / 共34页
2022年最新北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《2022年最新北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第一章三角形的证明同步测评练习题(无超纲).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4

2、,6,.的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-10122、等腰三角形周长为17cm,其中一边长为5cm,则该等腰三角形的腰长为()A6cmB7cmC5cm或6cmD5cm3、如图,在RtABC中,C90,A的平分线交BC于点D,过点C作CGAB于点G,交AD于点E,过点D作DFAB于点F下列结论:BACG;CEDF;CEDCDE;SAEC:SAEGAC:AG上述结论中正确的个数是()A4个B3个C2个D1个4、如图,在ABC中,ACB=90,CAB=30,A

3、C=63,D为AB上一动点(不与点A重合),AED为等边三角形,过D点作DE的垂线,F为垂线上任意一点,G为EF的中点,则线段BG长的最小值是( )A23B6C33D95、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,156、如图,等边ABC中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D127、下列命题的逆命题是假命题的是()A同旁内角互补,两直线平行B对于有理数a,如果3a0,那么a0C有两个内角互余的三角形是直角三角形D在任何一个直角三角形中,都没有钝角8、ABC 中,

4、是垂足,与交于,则ABCD9、如图所示,P为平分线上的点,于D,则点P到OB的距离为( )A5cmB4cmC3cmD2cm10、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _2、若,则以、为边长的等腰三角形的周长为_3、如图,点是上的一点,则下列结论:;,其中成立的有_个4、如图,在RtABC中,C90,ACBC,AD平分CAB,如果CD1,那么B

5、D_5、一个直角三角形房梁如图所示,其中,垂足为,那么_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC是等边三角形,DEBC,分别交AB,AC于点D,E(1)求证:ADE是等边三角形;(2)点F在线段DE上,点G在ABC外,BF=CG,ABF=ACG,求证:AF=FG2、在55的正方形网格中,点A,B,C,D,E均在格点上(1)图中根据 来判断ABCBED;(2)图中BC与DE的数量关系是 ,位置关系是 ;(3)ABC是以AB为腰的等腰直角三角形,请在图中用字母C标出正确的点C位置,使点C在格点上,画出所有可能的等腰直角三角形3、如图,长方形AOBC在直角坐标系中,点A在y轴上

6、,点B在x轴上,已知点C的坐标是(8,4)(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当PAM的面积与长方形OACB的面积相等时,求点P的坐标4、(问题背景)学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边ABC,D是ABC外一点,连接AD、CD、BD,若ADC=30,AD=3,BD=5,求CD的长该小组在研究如图2中OMNOPQ中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程解:如图3所示,以DC为边作等边CDE,连接AEABC,DCE是等边三角形,

7、BC=AC,DC=EC,BCA=DCE=60BCA+ACD= +ACD, ,AE=BD=5,ADC=30,CDE=60,ADE=ADC+CDE=90AD=3,CD=DE= (尝试应用)如图4,在ABC中,ABC=45,AB=2,以AC为直角边,A为直角顶点作等腰直角ACD,求BD的长(拓展创新)如图5,在ABC中,AB=4,AC=8,以BC为边向往外作等腰BCD,BD=CD,BDC=120,连接AD,求AD的最大值5、如图,ABC为等边三角形,D是BC中点,ADE=60,CE是ABC的外角ACF的平分线求证:AD=DE-参考答案-一、单选题1、C【分析】首先确定角码的变化规律,利用规律确定答案

8、即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),20214=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键2、C【分析】分为两种情况:5cm是等腰三角形的腰或5cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】若5cm为等腰三角形的腰长,则底边长为17557(cm),5+57,符合三角形的三边关系

9、;若5cm为等腰三角形的底边,则腰长为(175)26(cm),此时三角形的三边长分别为6cm,6cm,5cm,符合三角形的三边关系;该等腰三角形的腰长为5cm或6cm,故选:C【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边3、A【分析】由CGAB于点G得到CAB+ACG90,然后由C90得到CAB+B90,从而得到BACG,正确;由AD平分BAC得到CADBAD,从而得到CDE90CAD,由CGAB得到AEG90BAD,从而得到AEGCDE,然后结合对顶角相等得到CEDCDE,正确;然后得到CECD,再由AD平分BAC,C90,DFAB得到

10、CDDF,即可得到CEDF,正确;过点E作EHAC于点H,则EHEG,然后得到SAEC,SAEG,从而得到SAEC:SAEGAC:AG,正确【详解】解:CGAB,CGA90,CAB+ACG90,C90,CAB+B90,BACG,故正确;AD平分BAC,CADBAD,C90,CGA90,CDE90CAD,AEG90BAD,AEGCDE,CEDCDE,故正确;CECD,AD平分BAC,C90,DFAB,CDDF,CEDF,故正确;如图,过点E作EHAC于点H,则EHEG,SAEC,SAEG,SAEC:SAEGAC:AG,故正确;正确的个数是4个,故选:A【点睛】本题考查了三角形的内角和定理、角平分

11、线的性质定理、等腰三角形的性质,解题的关键是熟知直角三角形的两个锐角互余4、B【分析】连接,设交于点,先判定为线段的垂直平分线,再判定,然后由全等三角形的性质可得答案【详解】解:如图,连接,设交于点,为的中点,点在线段的垂直平分线上,为等边三角形,点在线段的垂直平分线上,为线段的垂直平分线,点在射线上,当时,的值最小,如图所示,设点为垂足,则在和中,解得:,故选:B【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键5、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,

12、故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键6、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型7、D【分析】先写出每个选项中的逆命题,然后判断真假即可【

13、详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a0,那么a0的逆命题为:对于有理数a,如果a0,则3a0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在于能够熟知相关知识进行求解8、A【分析】根据题意利用含60的直角三角形性质结合勾股定理进行分析计算即可得出答案.【详解】解:如图,,设

14、,所以勾股定理可得:,则解得:或(舍去),.故选:A.【点睛】本题考查含60的直角三角形性质和勾股定理以及等腰直角三角形,熟练掌握相关的性质是解题的关键.9、C【分析】根据角平分线的性质可得角平分线上的点到角的两边的距离相等,即可求得点P到OB的距离等于【详解】解:P为平分线上的点,于D,点P到OB的距离为3cm故选:C【点睛】本题考查了角平分线的性质,掌握角平分线的性质是解题的关键10、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得到

15、的度数,再计算出的度数即可【详解】解:作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角的

16、两边的距离相等是解题的关键,注意三角形内角和定理和角平分线的定义的正确运用二、填空题1、角平分线【分析】根据角平分线的判定可知【详解】解:根据角平分线的判定可知:平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的角平分线,故答案为:角平分线【点睛】本题考查了角平分线的判定,解题关键是明确在角的内部(包括顶点)到角的两边距离相等的点在这个角的平分线上2、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可【详解】解:,解得:,若是腰长,则底边为7,三角形的三边分别为3、3、7,3、3、7不能组成三角形;若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成

17、三角形,周长为:,以、为边长的等腰三角形的周长为17,故答案为:17【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解3、1【分析】根据,得出AC=EBBC,可判断;根据,可得ADC=ECB,得出ADBC,根据BC与BE相交,可判断;根据,得出ADC=ECB,根据直角三角形两锐角互余得出ADC+ACD=90,利用等量代换得出ECB+ACD=90可判断;,得出AD=EC,DC=CB,根据线段和AD+DE=EC+DE=DC=CBBE,可判断即可【详解】解:点是上的一点,AC=EBBC,故不正确;,ADC=ECB,ADBC,BC与BE相交,故不正确

18、;,ADC=ECB,ADC+ACD=90,ECB+ACD=90即ACB=90,故正确;,AD=EC,DC=CB,AD+DE=EC+DE=DC=CBBE,故不正确;其中成立的有1个故答案为1【点睛】本题考查全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定,掌握全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定是解题关键4、【分析】过点D作DEAB于E,根据角平分线上的点到角的两边的距离相等可得DECD,再求出BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答【详解】解:如图,过点D作DEAB于E,AD平分CAB,C90,DECD1,ACBC,C90,B45

19、,BDE是等腰直角三角形,BDDE故答案为:【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的直角边与斜边的关系5、【分析】利用直角三角形中,30角所对的直角边等于斜边的一半,即可求解【详解】解:, , , , , 故答案为:【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形中,30角所对的直角边等于斜边的一半是解题的关键三、解答题1、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知ABFACG,则有AF=AG,进而可得FAG=60,最后问题可求证【详解】证明:(1

20、)是等边三角形,DEBC,是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC,ABFACG(SAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键2、(1)SAS;(2)BC=DE,BCDE;(3)画图见详解【分析】(1)由网格信息可知AB=BE,AC=BD,BAC=EBD,故ABCBED为边角边全等(2)由(1)可知BC=DE,过D点作BC平行线DF,连接FE,再由网格数得出DF、DE、FE的长度,满足勾股定理,即推出BCDE(3)如图所示,共有三种C点满足ABC是以AB为腰的等腰直角三角形【详解】

21、(1)根据网格中的图象可知AB=BE,AC=BD,BAC=EBDABCBED为SAS全等(2)由(1)知ABCBEDBC=DE过D点作BC平行线DF,连接FE点A,B,C,D,E均在格点上又为直角三角形,FDE=90FD/BCBCDE(3)若是以AB为等腰直角三角形的腰,即有AB=BC,ABC=90或AB=AC,BAC=90两种情况又,ABC=90,C点有如图两种位置而,BAC=90,C点有如图一种位置【点睛】本题考查了网格图中的直角三角形的判断以及画等腰三角形,全等三角形的判定条件,运用数形结合的思想是解题的关键3、(1);(2)5;(3)点P的坐标为(,)或(,)【分析】(1)由坐标系中点

22、的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AMBM,OMOBBM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由PAM的面积与长方形OACB的面积相等可得出SPAM的值,设点P的坐标为(x,x4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解【详解】解:(1)四边形AOBC为长方形,且点C的坐

23、标是(8,4),AOCB4,OBAC8,A点坐标为(0,4),B点坐标为(8,0)设对角线AB所在直线的函数关系式为ykxb,则有,解得:,对角线AB所在直线的函数关系式为yx4(2)AOB90,勾股定理得:AB4,MN垂直平分AB,BNANAB2MN为线段AB的垂直平分线,AMBM设AMa,则BMa,OM8a,由勾股定理得,a242(8a)2,解得a5,即AM5(3)(方法一)OM3,点M坐标为(3,0)又点A坐标为(0,4),直线AM的解析式为yx4点P在直线AB:yx4上,设P点坐标为(m,m4),点P到直线AM:xy40的距离hPAM的面积SPAMAMh|m|SOABCAOOB32,解

24、得m ,故点P的坐标为(,)或(,)(方法二)S长方形OACB8432,SPAM32设点P的坐标为(x,x4)当点P在AM右侧时,SPAMMB(yAyP)5(4x4)32,解得:x,点P的坐标为(,);当点P在AM左侧时,SPAMSPMBSABMMByP105(x4)1032,解得:x,点P的坐标为(,)综上所述,点P的坐标为(,)或(,)【点睛】本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公

25、式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个4、 问题背景;尝试应用;拓展创新【分析】问题背景根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;尝试应用以为直角边,A为直角顶点作等腰,连接,进而证明,根据勾股定理求得,即可求得的长;拓展创新 以为腰,作等腰,过点作,同理证明,进而根据含30度角的直角三角形的性质,勾股定理求得,根据三角形三边关系确定最大值时,三点共线,进而即可求得的最大值【详解】问题背景 解:如图3所示,以为边作等边,连接,是等边三角形,尝试应用 解:如图4所示,以为直角

26、边,A为直角顶点作等腰,连接,是等腰直角三角形, 拓展创新解:如图,以为腰,作等腰,过点作,即,是等腰三角形,则当取得最大值时,取得最大当三点共线时,取得最大值,如图,【点睛】本题考查了等腰三角形的性质与判定,三角形全等的性质与判定,勾股定理,线段最值问题,从题干部分理解作等腰三角形辅助线是解题的关键5、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60,又DGAC,BDGBGD60,BDG是等边三角形,AGD180BGD120,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180ACB)60,BCEACBACE120AGD,ABAC,点D为BC的中点,ADBADC90,又BDG60,ADE60,ADGEDC30,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁