《2022年北师大版八年级数学下册第一章三角形的证明必考点解析练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第一章三角形的证明必考点解析练习题(无超纲).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,不能作为直角三角形的三边的是( )A3,4,5B2,3,C8,15,17D,2、ABC 中,
2、 是垂足,与交于,则ABCD3、下列三个数为边长的三角形不是直角三角形的是( )A3,3,B4,8,C6,8,10D5,5,4、下列条件:;,能判定是直角三角形的有( )A4个B3个C2个D1个5、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D356、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D707、我们称网格线的交点为格点如图,在44的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是等腰直角三角形,则满足条件的格点C的个数是()A3B4C5D68、如图点在同一条直线上,CBE,ADC都是等边三
3、角形,相交于点O,且分别与交于点,连接,有如下结论:DCBACE;CMN为等边三角形;.其中正确的结论个数是( )A1个B2个C3个D4个9、如图,ABC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个10、如图所示,P为平分线上的点,于D,则点P到OB的距离为( )A5cmB4cmC3cmD2cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC是等腰三角形,若A70,则B_2、ABC的高AD所在直线与高
4、BE所在直线相交于点F且DFCD,则ABC_3、如图,ABC中,ABBC,ABC120,E是线段AC上一点,连接BE并延长至D,连接CD,若BCD120,AB2CD,AE7,则线段CE长为 _4、如图,在RtABC中,A90,ABC的平分线BD交AC于点D,AD2,BC6,则BDC的面积是 _5、如图,ABC中,于D,则_;三、解答题(5小题,每小题10分,共计50分)1、中,CD平分,点E是BC上一动点,连接AE交CD于点D(1)如图1,若,AE平分,则的度数为_;(2)如图2,若,则的度数为_;(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,试判断AB与CF的位置关系,并证明你
5、的结论2、如图,点C是线段AB上一点,ACF与BCE都是等边三角形,连接AE,BF(1)求证:AE=BF;(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC依题意补全图形;判断CMN的形状,并证明你的结论3、如图1,在平面直角坐标系xOy中,点A-4,0,B4,0,C0,4,给出如下定义:若P为ABC内(不含边界)一点,且AP与BCP的一条边相等,则称P为ABC的友爱点(1)在P10,3,P2-1,1,中,ABC的友爱点是_;(2)如图2,若P为ABC内一点,且PAB=PCB=15,求证:P为ABC的友爱点;(3)直线l为过点M0,m,且与x轴平行的直线,若直线l上存在ABC的三个友
6、爱点,直接写出m的取值范围4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB5、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将BOC沿BC翻折至B
7、EC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使MBA=BCO,点F是射线BA上的一点(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE求点F的坐标;求此时BEF的面积-参考答案-一、单选题1、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可【详解】解:A、32+42=52,符合勾股定理的逆定理,故选项错误;B、,符合勾股定理的逆定理,故选项错误;C、82+152=172,符合勾股定理的逆定理,故选项错
8、误;D、(32)2+(42)2=81+256=337,(52)2=625,(32)2+(42)2(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确.故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断2、A【分析】根据题意利用含60的直角三角形性质结合勾股定理进行分析计算即可得出答案.【详解】解:如图,,设,所以勾股定理可得:,则解得:或(舍去),.故选:A.【点睛】本题考查含60的直角三角形性质和勾股定理以及等腰直角三角形,熟练掌握相关的性
9、质是解题的关键.3、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断【详解】解:A、3232()2,能构成直角三角形,故此选项不合题意;B、42()282,能构成直角三角形,故此选项不符合题意;C、6282102,能构成直角三角形,故此选项不合题意;D、5252()2,不能构成直角三角形,故此选项符合题意故选:D【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论【
10、详解】解:即,ABC是直角三角形,故符合题意;A+B+C=180,C=AB,A+B+AB=180,即A=90,ABC是直角三角形,故符合题意;,设a=,b=,c=,则,ABC不是直角三角形,故不合题意;,C=180=75,故不是直角三角形;故不合题意综上,符合题意的有,共2个,故选:C【点睛】本题主要考查了直角三角形的判定方法如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形5、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性质解答【详解】解:ABAC,D是BC的中点,ADB
11、C,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键6、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点7、A【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的格点C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的格点C点有
12、3个故共有3个点,故选:A【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想8、D【分析】由SAS即可证明,则正确;有CAE=CDB,然后证明ACMDCN,则正确;由CM=CN,MCN=60,即可得到为等边三角形,则正确;由ADCE,则DAO=NEO=CBN,由外角的性质,即可得到答案【详解】解:DAC和EBC均是等边三角形,AC=CD,BC=CE,ACD=BCE=60,ACD+DCE=BCE+DCE,即ACE=BCD,MCN=180-ACD-BCE=60,在ACE和DCB中,ACEDCB(SAS),则正确;AE
13、=BD,CAE=CDB,在ACM和DCN中,ACMDCN(ASA),CM=CN,;则正确;MCN=60,为等边三角形;则正确;DAC=ECB=60,ADCE,DAO=NEO=CBN,;则正确;正确的结论由4个;故选D【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键9、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF
14、+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键10、C【分析】根据角平分线的性质可得角平分线上的点到角的两边的距离相等,即可求得点P到OB的距离等于【详解】解:P为平分线上的点,于D,点P到OB的距离为3cm故选:C【点睛】本题考查了角平分线的
15、性质,掌握角平分线的性质是解题的关键二、填空题1、或或【分析】分是顶角,是底角,是底角,是底角,是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得【详解】解:由题意,分以下三种情况:当是顶角,是底角时,则;当是底角,是底角时,则;当是底角,是顶角时,则;综上,的度数为或或,故答案为:或或【点睛】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键2、45或135【分析】根据题意,分两种情况讨论:当为锐角三角形时;当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得【详解】解:如图所示:当为锐角三角形
16、时,在BDF与中,BDFADC,;如图所示:当为钝角三角形时,在BDF与中,BDFADC,综合可得:为或,故答案为:或【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键3、#【分析】作,垂足为,根据等腰三角形的性质可得,根据含30度角的直角三角形的性质得出,那么可证再利用证明,得出,设,根据列出方程,求解即可【详解】解:作,垂足为,在和中,设,则,线段长为故答案为【点睛】本题考查了等腰三角形的性质、含30度角的直角三角形的性质、全等三角形的判定和性质,解题的关键是添加辅助线构造全等三角形,属于中考常考题型4、6【分析】过D作DEBC于E,
17、根据角平分线的性质求出ADDE2,再根据三角形的面积公式求出即可【详解】解:过D作DEBC于E,ABC的平分线是BD,A90(即DAAB),DEBC,ADDE,AD2,DE2,BC6,SBDC,故答案为:6【点睛】本题考查的是角平分线的性质的应用,掌握“角平分线上的点到这个角的两边的距离相等”是解本题的关键.5、1:3【分析】利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比【详解】,中, 中, 故答案为:【点睛】本题考查30直角三角形的性质,两次使用30度角所对的直角边是斜边的一半时解题的关键三、解答题1、则该直线的解析式为:y=x+令x=0,则y=5,即
18、B(0,5);(2)由(1)知,C(-3,2)如图1,设Q(a,-a)SQAC=2SAOC,SQAO=3SAOC,或SQAO=SAOC,当Q在第二象限即SQAO=3SAOC时,OAyQ=3OAyC,yQ=3yC,即-a=32=6, 解得 a=-9,Q(-9,6);当Q在第四象限SQAO=SAOC时,OAyQ=OAyC,yQ=2yC,即a=2,解得 a=3(舍去负值),Q(3,-2);综上,点Q的坐标为(-9,6)或(3,-2);(3)如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;如图3,作P1FCD于F,P1EOC于E,作P2HCD于H,P2GOC于GC(-3,2),A(-5
19、,0),AC=,P2H=P2G,P2HCD,P2GOC,CP2是OCD的平分线,OCP2=DCP2,AP2C=AOC+OCP2,ACP2=ACD+DCP2,ACP2=AP2C,AP2=AC,A(-5,0),P2(-5+2,0)同理:P1(-5-2,0)综上,点P的坐标为(-5-2,0)或(-5+2,0)【点睛】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强5(1)40;(2)10;(3)ABCF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得BAC+ACB=140即可求解;(2)根据
20、三角形的外角性质求得B+BAE=47即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到FCG=2F,再根据角平分线的定义和等角的余角相等得到BCF=2F,则有B=BCF,根据平行线在判定即可得出结论【详解】解:(1)ADC=110,DAC+DCA=180110=70,AE平分BAC,CD平分ACB,BAC=2DAC,ACB=2DCA,BAC+ACB=2(DAC+DCA)=140,B=180(BAC+ACB)=180140=40,故答案为:40;(2)ADC=DCE+DEC=100,DCE=53,DEC=10053=47,B+BAE=DEC=47,BBAE=27,BAE=1
21、0,故答案为:10;(3)ABCF,理由为:如图,延长AC到G,AC=CF,F=FAC,FCG=F+FAC=2F,CFCD,BCF+BCD=90,FCG+ACD=90,CD平分ACB,BCD=ACD,BCF=FCG=2F,B=2F,B=BCF,ABCF【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键2、(1)证明见解析;(2)补全图形见解析;是等边三角形,证明见解析【分析】(1)由等边三角形的性质可知,结合题意易得出即可利用“SAS”证明,即得出;(2)根据题意补全图形即可;由全等三角
22、形的性质可知,再由题意点M,N分别是AE,BF的中点,即得出即可利用“SAS”证明,得出结论,最后根据,即得出,即可判定是等边三角形(1)与都是等边三角形,即,在和中,(2)画图如下:是等边三角形理由如下:,点M,N分别是AE,BF的中点,在和中,即,是等边三角形【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点利用数形结合的思想是解答本题的关键3、(1)P1、P2;(2)见解析;(3)0m2【分析】(1)根据A(x1,y1)、和B(x2,y2)之间的距离公式AB=以及友爱点定义解答即可;(2)由题意易知OAB=OCA=OCB=45,进而可求得PAC=OCP=30,则可
23、得出ACP=APC=75,根据等角对等边和友爱点定义即可证得结论;(3)由题意,ABC在友爱点P满足AP=BP或AP=PC或AP=BC=AC三种情况,分别讨论求解即可【详解】解:(1)点,关于y轴对称,点在y轴上,AP1=BP1,故P1是的友爱点;AP2= ,CP2= ,AP2= CP2,故P1是的友爱点;AP3=,CP3=,BP3=,BC=,故P3不是的友爱点,综上,的友爱点是P1、P2,故答案为:P1、P2;(2)点,OA=OB=OC,AC= BC, BOC=90,OAB=OCA=OCB=45,PAC=OCP=30,ACP=45+30=75,APC=180PACACP=1803075=75
24、,ACP=APC,AP=AC=BC,P为的友爱点;(3)由题意,ABC的友爱点P满足AP=BP或AP=PC或AP=BC三种情况,若AP=BP,则点P在线段AB的垂直平分线上,即点P在y轴线段OC上,若AP=PC,则点P在线段AC的垂直平分线上;若AP=BC,则点P在以点A为圆心,BC即AC长为半径的圆上,如图,设AC的中点为G,则G的坐标为(2,2),由图可知,当直线l为过点G和过点且与轴平行的直线在x轴之间时,直线上存在的三个友爱点,m的取值范围为0m2【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解
25、题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键4、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解5、(1)(-1 ,0),(2 ,0);(2)F(-3 ,4);【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)过点F作FP轴于点P,利用AAS证明FPBBOC即可求解;过点F作FQBE于点Q
26、,证明FB是PBE的角平分线,利用角平分线的性质求解即可【详解】解:(1)B(0 ,3),OB=3,OB=CD,且OD=2OC,OC=1,OD=2,C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)过点F作FP轴于点P,PBF=BCO,BF=BC,又FPB=BOC=90,FPBBOC(AAS),FP=BO=3,PB= OC=1,PO=4,F(-3 ,4);过点F作FQBE于点Q,CBO+BCO=90,PBF=BCO,CBO+PBF=90,则CBF=90,由折叠的性质得:EBC=OBC,EB=BO=3,EBC +EBF=90,EBF=PBF,即FB是PBE的角平分线,又FQBE,FP轴,FQ= FP=3,BEF的面积为BEFQ=【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件