2022年最新北师大版八年级数学下册第一章三角形的证明同步测试练习题(无超纲).docx

上传人:可****阿 文档编号:32517358 上传时间:2022-08-09 格式:DOCX 页数:27 大小:512.27KB
返回 下载 相关 举报
2022年最新北师大版八年级数学下册第一章三角形的证明同步测试练习题(无超纲).docx_第1页
第1页 / 共27页
2022年最新北师大版八年级数学下册第一章三角形的证明同步测试练习题(无超纲).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2022年最新北师大版八年级数学下册第一章三角形的证明同步测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第一章三角形的证明同步测试练习题(无超纲).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列各组数据为三角形三边,能构成直角三角形的是()A4,8,7B5,12,14C2,2,4D6,8,102

2、、下列命题是假命题的是( )A对顶角相等B直角三角形两锐角互余C同位角相等D全等三角形对应角相等3、等腰三角形的一个角是80,则它的一个底角的度数是( )A50B80C50或80D100或804、如图,在ABC中,C90,点D为BC上一点,DEAB于E,并且DEDC,F为AC上一点,则下列结论中正确的是()ADEDFBBDFDC12DABAC5、如图,在ABC中, ABC和ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作ODAC于D,下列四个结论:EF=BE+CF; ;点O到ABC各边的距离相等;设OD=m, ,则SAEF=mn其中正确的结论个数是( )A1个B2个C

3、3个D4个6、下列各组数中,不能作为直角三角形的三边的是( )A3,4,5B2,3,C8,15,17D,7、如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点M,作直线MN交AB于点D,交AC于点E,连接CD若AC6,AB8,BC4,则BEC的周长( )A10B12C8D148、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米9、已知等腰三角形的两条边长分别为4和9,则它的周长为( )A17B22C23D17或2210、如图,在ABC中,cm,的垂直平

4、分线交于点,交于点,的垂直平分线交于点,交于点,则的长为( )A4cmB3cmC2cmD1cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由于木质衣架没有柔性,在挂置衣服的时候不太方便操作小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可如图2,衣架杆,若衣架收拢时,如图1,若衣架打开时,则此时,两点之间的距离扩大了_2、如图,P是OA上一点,P与关于OB对称,作于点M,则_3、平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _4、如图,在ABC中,ABAC在AB、AC上分别截取AP,AQ,使APAQ再分别以点P,Q为圆心,以大于P

5、Q的长为半径作弧,两弧在BAC内交于点R,作射线AR,交BC于点D若BC6,则BD的长为_5、如图,ABC中,A68,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则EDF_度三、解答题(5小题,每小题10分,共计50分)1、(情景呈现)画AOB=90,并画AOB的平分线OC(I)把三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别与AOB的两边OA,OB垂直,垂足为E,F(如图1)则PE=PF;若把三角尺绕点P旋转(如图2),则PE _PF(选填:“”或“=”)(理解应用)(2)在(1)的条件下,过点P作直线GHOC,分别交OA,OB于点G,如图3图中全等

6、三角形有_对(不添加辅助线)猜想,FH,EF之间的关系为_(拓展延伸)(3)如图4,画AOB=60,并画AOB的平分线OC,在OC上任取一点P,作EPF=120,EPF的两边分别与OA,OB相交于E,F两点,PE与PF相等吗?请说明理由2、如图,等边ABC中,点D在BC上,CE=CD,BCE=60,连接AD、BE(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120的角3、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2

7、,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形4、在长方形ABCD中,截取如图所示的阴影部分,已知EC5,CF5,FG4,EG3,EGF90(1)连接EF,求证:FEC90;(2)求出图中阴影部分的面积5、数学课上,王老师布置如下任务:如图,已知MAN45,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB2A下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图

8、痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A-参考答案-一、单选题1、D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、42+7282,故不为直角三角形;B、52+122142,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、62+82=102,能构成直角三角形;故选:D【点睛】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以

9、判断即可勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形2、C【分析】根据对顶角的性质、直角三角形的性质、平行线的性质、全等三角形的性质逐项判断即可得【详解】解:A、对顶角相等,则此项命题是真命题;B、直角三角形两锐角互余,则此项命题是真命题;C、两直线平行,同位角相等,则此项命题是假命题;D、全等三角形对应角相等,则此项命题是真命题;故选:C【点睛】本题考查了对顶角、直角三角形的性质、平行线的性质、全等三角形的性质、命题,熟练掌握各性质是解题关键3、C【分析】已知给出一个角的的度数为80,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可【详解】解:等腰

10、三角形的一个角是80,当80为底角时,它的一个底角是80,当80为顶角时,它的一个底角是,则它的一个底角是50或80故选:C【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键4、C【分析】在直角三角形DCF中,利用斜边长度大于直角边长度,可以得到DFDC,又DCDE,所以DFDE,故A选项错误,同理,D选项错误,假设BDFD,则可以判定DBEDFC,所以BDFC,而在题目中,B是定角,DFC随着F的变化而变化,假设不成立,故B选项是错误的,由DEDC,DCAC,DEAB,根据RtDEARtDCA(HL)得到C选项是正确的【详解】解:(1)在直角三角形DCF中,利用

11、斜边长度大于直角边长度,可以得到DFDC,又DCDE,所以DFDE,故A选项错误;(2)BDE与DCF,只满足DEBDCF90,DCDE的条件,不能判定两个三角形全等,故不能得到BDFD,另一方面,假设BDFD,在RtDBE与DFC中,RtDBERtDFC(HL),BDFC,而图中B大小是固定的,DFC的大小随着F的变化而变化,故上述假设是不成立的,故B选项错误;(3)DCAC,DEAB,DCDE,在RtDEA和RtDCA中,RtDEARtDCA(HL),12,故C选项正确;(4)在直角三角形ABC中,利用斜边长度大于直角边长度,可以得到ABAC,故D选项错误,故选:C【点睛】本题考查了全等三

12、角形的性质与判定,三角形三边不等关系关系,掌握全等三角形的性质与判定,直角三角形三边关系是解题关键5、C【分析】根据ABC和ACB的平分线相交于点O和三角形的内角和等于180,可得;再由ABC和ACB的平分线相交于点O和EFBC,可得EOB=OBE,FOC=OCF,从而得到BE=OE,CF=OF,进而得到;过点O作OMAB于M,作ONBC于N,连接OA,根据角平分线的性质定理,可得点到各边的距离相等;又由AE+AF=n,可得SAEF=SAOE+SAOF=mn,即可求解【详解】解:在ABC中,ABC和ACB的平分线相交于点O,OBC=ABC,OCB=ACB,ABC+ACB=180-A,OBC+O

13、CB=(ABC+ACB)=90-ABOC=180-(OBC+OCB)=90+A,故正确;在ABC中,ABC和ACB的平分线相交于点O,OBC=OBE,OCB=OCF,EFBC,OBC=EOB,OCB=FOC,EOB=OBE,FOC=OCF,BE=OE,CF=OF,EF=OE+OF=BE+CF,故正确;过点O作OMAB于M,作ONBC于N,连接OA,又在ABC中,ABC和ACB的平分线相交于点O,ON=OD=OM=m,即点O到ABC各边的距离相等,故正确;AE+AF=n,SAEF=SAOE+SAOF=AEOM+AFOD=OD(AE+AF)=mn,故错误;综上所述,正确的结论有3个故选:C【点睛】

14、本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键6、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可【详解】解:A、32+42=52,符合勾股定理的逆定理,故选项错误;B、,符合勾股定理的逆定理,故选项错误;C、82+152=172,符合勾股定理的逆定理,故选项错误;D、(32)2+(42)2=81+256=337,(52)2=625,(32)2+(42)2(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,

15、故选项正确.故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断7、A【分析】由垂直平分线的性质得,故的周长为,计算即可得出答案【详解】由题可知:为的垂直平分线,故选:A【点睛】本题考查垂直平分线的性质,掌握垂直平分线上的点到线段两端的距离相等是解题的关键8、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理9、B【分析】题目给出等腰三角形有两条边

16、长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:(1)如果腰长为4,则三边是:4,4,9;不满足三角形两边之和大于第三边的性质,不成立;(2)如果腰长为9,则三边是:4,9,9;满足三角形两边之和大于第三边的性质,成立;周长=9+9+4=22故选:B【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键10、C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出BMA与CNA是等腰三角形,再证明

17、MAN为等边三角形即可【详解】解:连接AM,AN,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,BMAM,CNAN,MABB,CANC,BAC120,ABAC,BC30,BAMCAN60,AMNANM60,AMN是等边三角形,AMANMN,BMMNNC,BC6cm,MN2cm故答案为2cm故选:C【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键二、填空题1、#【分析】分别求出时与时AB的长,故可求解【详解】如图,当时,连接ABOAB是等边三角形如图,当时,连接AB,过O点作OCABA=B=,AC=BCOC=cm

18、AC=cmAB=2AC=cm,两点之间的距离扩大了()cm故答案为:【点睛】此题主要考查等腰三角形、等边三角形的判定与性质,解题的关键是熟知勾股定理、等腰三角形及含30的直角三角形的性质2、2【分析】连接,根据对称的性质可得:,然后在中,利用角所对直角边是斜边的一半即可得【详解】解:连接,如图所示:P与关于OB对称,在中,故答案为:2【点睛】题目主要考查轴对称的性质,直角三角形中的性质等,理解题意,作出辅助线,结合这几个性质是解题关键3、角平分线【分析】根据角平分线的判定可知【详解】解:根据角平分线的判定可知:平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的角平分线,故答案

19、为:角平分线【点睛】本题考查了角平分线的判定,解题关键是明确在角的内部(包括顶点)到角的两边距离相等的点在这个角的平分线上4、3【分析】根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论【详解】解:由题可得,AR平分BAC,又AB=AC,AD是三角形ABC的中线,BD=BC=6=3.故答案为:3【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合5、68【分析】根据线段垂直平分线的性质得到EBED,FDFC,则EDBB,FDCC,从而可以得到EDB+FDCB+C,再由EDF180(EDB+FDC),A180(

20、B+C),即可得到EDFA68【详解】解:BD、CD的垂直平分线分别交AB、AC于点E、F,EBED,FDFC,EDBB,FDCC,EDB+FDCB+C,EDF180(EDB+FDC),A180(B+C),EDFA68故答案为:68【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键三、解答题1、(1)=;(2)3;(3)相等,理由见解析【分析】(1)PE=PF,利用条件证明PEMPFN即可得出结论;(2)根据等腰直角三角形的性质得到OP=PG=PH,证明GPEOPF(ASA),EPOFPH,GPOOPH,得到答案;根据勾股

21、定理,全等三角形的性质解答;(3)作PGOA于G,PHOB于H,证明PGEPHF,根据全等三角形的性质证明结论【详解】(1)如图2,过点P作PMOA,PNOB,垂足是M,N, AOB=PME=PNF=90,MPN=90,OC是AOB的平分线,PM=PN,EPF=90,MPE=FPN,在PEM和PFN中,PEMPFN(ASA),PE=PF,故答案为:=;(2)OC平分AOB,AOC=BOC=45,GHOC,OGH=OHG=45,OP=PG=PH,GPO=90,EPF=90,GPE=OPF,在GPE和OPF中,GPEOPF(ASA),同理可证明EPOFPH,GPOOPH(SAS),全等三角形有3对

22、,故答案为:3;GE2+FH2=EF2,理由如下:GPEOPF,GE=OF,EPOFPH,FH=OE,在RtEOF中,OF2+OE2=EF2,GE2+FH2=EF2,故答案为:GE2+FH2=EF2;(4)如图,作PGOA于G,PHOB于H,在OPG和OPH中,OPGOPH,PG=PH,AOB=60,PGO=PHO=90,GPH=120,EPF=120,GPH=EPF,GPE=FPH,在PGE和PHF中,PGEPHF,PE=PF【点睛】本题考查几何变换综合题,全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题2、(1)见解析;(2)等于120的

23、角有BFC、BDE、DFE=120【分析】(1)利用SAS证明ADCBEC,即可证明AD=BE;(2)证明CDE为等边三角形,可求得BDE=120;利用全等三角形的性质可求得BFD=BCA=60,推出DFE=120;同理可推出BFC=AFC+BFD=120【详解】(1)证明:等边ABC中,CA=CB,ACB=60,CE=CD,BCE=60,ADCBEC(SAS),AD=BE;(2)等于120的角有BFC、BDE、DFE=120CE=CD,BCE=60,CDE为等边三角形,CDE=60,BDE=120;ADCBEC,DAC=EBC,又BDF=ADC,BFD=BCA=60,DFE=120;同理可求

24、得AFC=ABC=60,BFC=AFC+BFD=120;综上,等于120的角有BFC、BDE、DFE=120【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键3、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180

25、,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质

26、,熟练掌握全等三角形的判定与性质是解题的关键4、(1)见解析;(2)【分析】(1)先求EF,再利用勾股定理的逆定理得出EFC为直角三角形,即可得证;(2)先求出和的面积,再利用得出阴影部分的面积【详解】解:(1)EGF90,根据勾股定理得:EF=,EFC为直角三角形,FEC=90;(2),【点睛】本题考查了勾股定理及其逆定理,灵活运用勾股定理是解题的关键5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可(2)根据垂直平分线的性质以及等边对等角进行解答即可【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示; (2)解:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)AABD,BDCAABD2ABCBD,ACBBDC ,(等边对等角)(填推理的依据)ACB2A【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁