《2022年强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题综合练习试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题综合练习试题(精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设“”表示三种不同的物体,现用天平称了两次,情况如图,那么“”中质量最大的是( ) ABCD无法判断2、某校
2、数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米3、已知,设则M,N,P,Q四数中最大的是( )AMBNCPDQ4、据报道,日本福岛核电站发生泄漏事故后,在我市环境空气中检测出一种微量的放射性核素“碘”,含量为每立方米0.4毫贝克(这种元素的半衰期是8天,即每8天含量减少一半,如8天后减少到0.2毫贝克),那么要使含量降至每立方米0.0004毫贝克以下,下列天数中,能达到目标的最少的天数是( )A64B71C82D1045、纳米技术
3、和纳米材料的应用几乎涉及各个领域,纳米指的是()A长度单位B面积单位C体积单位D以上都不对6、小明有许多个可供贴用的数字,但只有个可供贴用的数字,他用这些数字将他的剪贴簿的各页编号,最多他能编贴到哪一页?( )A41B99C112D1197、如图.我们按规律将正整数填入平面直角左边系的部分对应点,若将点上的数字记作,如,则的值是( )ABCD8、为了求的值,可令,则,因此,所以,仿照以上推理计算出的值是( )ABCD9、如图,小明从A处出发沿北偏东方向行走至B处,又从B处沿南偏东方向行走至C处,则等于( )ABCD10、把3米长的绳子剪7次,剪成相等的长度,则( )A每段占3米长的B每段是1米
4、的C每段是全长的DB每段是1米的第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数的最小值是_2、某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_元;(2)如
5、果快递员一天累计送x小时甲类件,y小时乙类件,且x+y8,x,y均为正整数,那么他一天的最大收入为_元3、我们注意到,它们分别由三个连续数码2,3,4以及5,6,7经适当排列而成;而则是由四个连续数码3,4,5,6适当排列而成;那么下一个这种平方数是;_4、若不等式:对任意的成立,则实数x的取值范围_5、某建筑物的窗户为黄金矩形,已知它较长的一边长为1米,则较短的一边长为_(结果保留根号或者3位小数)三、解答题(5小题,每小题10分,共计50分)1、请仅用无刻度的直尺在下列图1和图2中按要求画菱形(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形A
6、BCD,E是对角线BD上任意一点(BEDE),以AE为边画一个菱形2、问题提出:(1)如图1,已知ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的BPC,且使BPC90,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,CBE=120,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?
7、若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由(塔A的占地面积忽略不计)3、猜谜语(各打数学中常用字):千人分在北上下;1人立在口上边4、已知函数,分别按下列要求求实数a的取值范围;(1)方程有实根;(2)方程有两个不等实根;(3)方程在有且只有一个实根5、(生活观察)甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:菜价元千克质量金额甲千克元乙千克元菜价元千克质量金额甲千克_元乙_千克元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价(均价总金额总质量)(数学思考)设甲每次买质量为千克的菜,乙每次买金额为元的菜,两
8、次的单价分别是元千克、元千克,用含有、的式子,分别表示出甲、乙两次买菜的均价、比较、的大小,并说明理由(知识迁移)某船在相距为的甲、乙两码头间往返航行一次,在没有水流时,船的速度为所需时间为:如果水流速度为时(),船顺水航行速度为(),逆水航行速度为(),所需时间为请借鉴上面的研究经验,比较、的大小,并说明理由-参考答案-一、单选题1、A【分析】根据题中的两个图找出重量关系,比较即可【详解】由第一个图可知, 由第二个图可知, 故选A【点睛】本题主要考查了物体的重量大小比较,正确掌握图中物体重量的大小关系是解题的关键2、D【解析】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子
9、,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为:9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题3、D【分析】根据题意,再利用作差法比较与即可.【详解】解:,恒成立,最大,即Q最大,故选:D.【点睛】本题考查了代数式的大小比较,解题的关键是掌握作差法.4、C【分析】根据这种元素的半衰期是8天,即每8天含量减少一半,设经过n次半衰期,由0.4毫贝克到0.0004毫贝克以下,可列出不等式求出n,进而
10、求出天数【详解】解:设经过n次半衰期,2n,n10108=80故能达到目标的最少天数是82天故选:C【点睛】本题理解题意的能力,先求出经过几次半衰期,然后求出天数,即可找到答案5、A【解析】【分析】根据长度单位的定义可知纳米指的是长度单位【详解】解:纳米指的是长度单位,故选A.【点睛】此题考查了长度单位,熟记长度单位的定义是解题的关键6、A【解析】【分析】首先确定14个2从小到大构成的数即可求解【详解】由于只有13个可供贴用的数字2,于是含数字2的数有以下13个:2,12,20,21,22,23,24,25,26,27,28,29,32由于小明有许多个可供贴用的数字0,1,3,4,5,6,7,
11、8,9,所以还可继续编贴到33,34,35,36,37,38,39,40,41所以最多他能编贴到41页故选A【点睛】本题是一道探索性实际问题,考查了同学们探索发现和应用数学知识解决实际问题的能力,有利于培养发展思维能力关键是得到第14个2所在的具体数7、A【分析】根据题意分析得,依次表示出到,根据裂项法则依次展开即可求解【详解】由图可知:,则故选A【点睛】本题考查找规律和简便运算,熟练图形中的数字规律和分数裂项法则为解题关键8、D【详解】=S,则+ =7S,两式相减,则 故选D.9、C【分析】根据方位角和平行线性质求出ABE,再求出EBC即可得出答案【详解】解:如图:小明从A处沿北偏东40方向
12、行走至点B处,又从点B处沿南偏东70方向行走至点C处,DAB=40,CBE=70,向北方向线是平行的,即ADBE,ABE=DAB=40,ABC=ABE+EBC=40+70=110,故选:C【点睛】本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键10、B【详解】试题分析:把3米长的绳子剪7次后将绳子剪成了相等的8段,所以每段应该是全长的 ,即长度为 米,所以是1米的,故选B二、填空题1、1016064【分析】根据绝对值的几何意义即可求出结果.【详解】解:由题意可得:根据绝对值的几何意义,时,在1x2时,y有最小值,时,在x=2时,y有最小值,时,在2x3时
13、,y有最小值,时,在x=3时,y有最小值,可发现:奇数个时,取x=中间数,y有最小值,偶数个时,取中间两数之一,y有最小值,函数表示数轴上分别到1,2,3,4,2016的点的距离之和,当1008x1009时,原式取得最小值,设x=1008,则最小值=(1+2+3+1007)+(1+2+3+1008)=1016064.故答案为:1016064.【点睛】本题考查了求函数的最值,绝对值的几何意义,解题的关键是举例发现规律,再根据规律求解.2、160 180 【分析】(1)根据表格数据得出答案即可;(2)根据x+y8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入【详解】解:(1)由统计表
14、可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 80= 160 (元)他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8当x=1时,则y=7该快递员一天的收入是1 30+270=30+ 140= 170 (元);当x=2时,则y=6该快递员-天的收入是155+260=55+120=175(元);当x=3时,则y=5该快递员一天的收入是1 80+250= 80+ 100= 180 (元);当x=4时,则y=4该快递员一天的收入是1100+240= 100+80 = 180 (元);当x=
15、5时,则y=3该快递员一天的收入是1115+230=115十60 = 175 (元);当x=6时,则y=2该快递员一天的收入是1 125+ 2 20= 125+40 = 165 (元);当x=7时,则y=1该快递员一天的收入是1135+210=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填: 160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.3、5476【分析】从672开始查找,找到第一个由四个连续数码组成的平方数,即为所求的平方数【详解】解:672=4489,不符合要求;682=46
16、24,不符合要求;692=4761,不符合要求;702=4900,不符合要求;712=5041,不符合要求;722=5184,不符合要求;732=5329,不符合要求;742=5476,符合要求下一个这种平方数是5476故答案为:5476【点睛】本题考查了完全平方数,数学上,平方数,或称完全平方数,完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数本题关键是按照顺序查找4、【分析】根据题意设关于a的函数为,从而可得当a=0时,y0,且a=1 时y0时,解出x的取值范围即可.【详解】解:由题意可得:对任意的成立,设,a=0时,y0,且a=11时, y0,即,解得:.则实数x的取值范
17、围是:.【点睛】本题考查了不等式恒成立问题的解法,注意构造函数,运用函数增减性解决问题.5、米【解析】设较短的一边长为x米,根据题意有,解得x=0.618,答:较短的一边长为0.618米.故答案为0.618.三、解答题1、(1)作图见解析;(2)作图见解析.【详解】(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形2、(1)点D所在的位置见解析;(2)AP的长为2或8;(3)可以,符合要求的BCDE的最大面积为.【分析】(1)根据平行四边形的特点,分三种情况利用平移的性质得到点D的位置即可;(2)由题意可知点P在边AD上时,BPC的面积最大,为满足BPC
18、90,根据AB比BC的一半小,以BC为直径画圆,圆与AD的交点即可满足条件的点P,然后根据已知条件利用勾股定理进行求解即可;(3)可以,如图所示,连接BD,由已知可得BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则可得为正三角形,连接并延长,经过点A至,使,连接,可得四边形为菱形,且,作EFBD,垂足为F,连接EO,则,则有,据此即可求得答案.【详解】(1)如图所示,有三个符合条件的平行四边形;(2)如图,AB=4,BC=10,取BC的中点O,则OBAB,以点O为圆心,OB长为半径作O,O一定于AD相交于两点,连接,BPC=90,点P不能在矩形外;BPC的顶点
19、P在或位置时,BPC的面积最大,作BC,垂足为E,则OE=3,由对称性得,综上可知AP的长为2或8;(3)可以,如图所示,连接BD,A为平行四边形BCDE的对称中心,BA=50,CBE=120,BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则,且=60,为正三角形,连接并延长,经过点A至,使,连接,BD,四边形为菱形,且,作EFBD,垂足为F,连接EO,则,所以符合要求的BCDE的最大面积为.【点睛】本题考查了直径所对的圆周角是直角,圆周角定理,等边三角形的判定与性质,菱形的判定与性质等,综合性较强,难度较大,正确画出符合题意的图形是解题的关键.3、乘;合【分
20、析】(1)“千人分在北上下”,“北”的上面一个“千”,下面一个“人”,是“乘”,正是数学中常用字;(2)一人在“口”上边是“合”,合数的“合”是数学中常用字;即可得解【详解】解:(1)千人分在北上下打数学中常用字是“乘”;(2)1人立在口上边打数学中常用字是“合”【点睛】本题考查了数学常识,对数学概念的理解和灵活运用是解题的关键4、(1);(2)且a0;(3)a3【分析】(1)利用根的判别式得到不等式,解之即可;(2)利用根的判别式得到不等式,解之即可;(3)分a0和a0两种情况分别讨论即可【详解】解:(1)有实根,当a=0时,解得:x=;当a0时,解得:且a0,;(2)有两个不等实根,当a=
21、0时,解得:x=,不符合;当a0时,解得:且a0,且a0;(3)若a0,则对称轴为直线x=,在y轴左侧,函数在(1,2)上单调递减,此时在(1,2)上没有实根;当a0时,对称轴为直线x=,在y轴右侧,若函数在(1,2)上有且只有一个实根,则且,解得:a3【点睛】本题考查了二次函数与一元二次方程的关系,二次函数的图像和性质,解题的关键是结合图像求解5、【生活观察】:(1)见解析表;(2)甲两次买菜的均价是元千克:乙两次买菜的均价是元千克;【数学思考】:当时,当时,见解析;【知识迁移】:,见解析.【分析】(1)根据单价、质量与金额的关系,进行求解.(2)根据均价总金额总质量,进行求解.【数学思考】:根据均价总金额总质量,进行表示与大小比较.【知识迁移】:根据时间=路程速度,进行表示与大小比较.【详解】(1)根据单价、质量与金额的关系,可得甲的金额和乙的质量,如图表所示第二次:菜价元千克质量金额甲千克元乙千克元(2)根据均价总金额总质量,甲两次买菜的均价为元千克,乙两次买菜的均价为元千克.【数学思考】:,当时,当时,【知识迁移】:,;,又,【点睛】本题考查“单价=金额质量”,“时间=路程速度”公式的综合应用,以及代数式的值的大小判别.