《强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题综合训练练习题.docx》由会员分享,可在线阅读,更多相关《强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题综合训练练习题.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子E
2、F的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米2、鄞州区有两大美丽的公园,分别是鄞州公园和鄞州湿地公园,两大公园的占地面积约达800000平方米,若按比例尺1:2000缩小后的面积大约相当于()A一个篮球场的面积B一个乒乓球台的面积C数学课本封面的面积D宁波日报一个版面的面积3、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin65
3、0.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米4、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米5、方程的不同有理根的个数是( )A0B1C2D46、对于题目:“如图1,平面上,正方形内有一长为、宽为的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长,再取最小整数甲:如图
4、2,思路是当为矩形对角线长时就可移转过去;结果取乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n14丙:如图4,思路是当为矩形的长与宽之和的倍时就可移转过去;结果取下列正确的是()A甲的思路错,他的值对B乙的思路和他的值都对C甲和丙的值都对D甲、乙的思路都错,而丙的思路对7、某民俗旅游村为接待游客住宿需要,开设了有张床位的旅馆,当每张床位每天收费元时,床位可全部租出若每张床位每天收费提高元,则相应的减少了张床位租出如果每张床位每天以元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A14元B15元C16元D18元8、扬帆中学有一块长,宽的矩形空地,
5、计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD9、有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有10个人报名,则n的最小值等于( )A91B90C82D8110、大象是世界上最大的陆栖动物,它的体重可达到好几吨,下面哪个动物的体重相当于它的百万分之一()A啄木鸟B蚂蚁C蜜蜂D公鸡第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了更好的开展线上学习,李老师打算选择一款适合网上授课的软
6、件,他让年级同学在使用过A、B、C三款软件后进行评分,统计结果如下:五星四星三星两星一星合计A52301332100B49361041100C35302564100(说明:学生对于网上授课软件的综合评价从高到低,依次为五星、四星、三星、二星和一星)李老师选择_(填“A”、“B”或“C”)款网上授课软件,能更好的开展线上学习(即评价不低于四星)的可能性最大2、如果从数1,2,3,14中,按由小到大的顺序取出,使同时满足,与,那么,所有符合上述要求的不同取法有_种3、在实数范围内因式分解因式_4、如图,是用图象反映储油罐内的油量V与输油管开启时间t的函数关系观察这个图象,以下结论正确的有_随着输油
7、管开启时间的增加,储油罐内的油量在减少;输油管开启10分钟时,储油罐内的油量是80立方米;如果储油罐内至少存油40立方米,那么输油管最多可以开启36分钟;输油管开启30分钟后,储油罐内的油量只有原油量的一半5、庆庆是一位特别喜欢学习数学的小朋友,周末这天他做完作业,在手机上找了一款数学相关的益智类游戏推箱子,要求将图中编号为的三个箱子分别推进图中“回”字的位置。如果庆庆要想一次性通关,应该怎样推?(1)先推(_)号箱子,这个箱子至少要走(_)个小方格;(2)再推(_)号箱子,这个箱子至少要走(_)个小方格;(3)最后推(_)号箱子,这个箱子至少要走(_)个小方格三、解答题(5小题,每小题10分
8、,共计50分)1、(阅读理解)用的矩形瓷砖,可拼得一些长度不同但宽度均为的图案已知长度为、的所有图案如下:(尝试操作)(1)如图,将小方格的边长看作,请在方格纸中画出长度为的所有图案(归纳发现)(2)观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整图案的长度所有不同图案的个数 2、你相信那些用摸彩来吸引人去碰“运气”的游戏吗?某人设摊“摸彩”,他手拿一个布袋,内装除颜色外完全相同的4个红球和4个绿球,每次让顾客“免费”从袋中摸出4个球,输赢的规则是:所摸球的颜色顾客的收益4个全红得50元3红1绿得20元2红2绿失30元1红3绿得20元4个全绿得50元若你摸出了2红2绿则失30元,
9、而对于其他四种情况,你均能赢钱乍一看,此规则似乎对顾客有利,许多人都难免动心去碰碰“运气”,甚至有人连连试了数次然而,顾客大多数都免不了以失败告终,而且试的次数越多,输的也就越多假如5种情况是等可能的,则赢的机会为,输的机会仅为,平均每摸5次有4次都应该赢,但游戏的妙处就在于这5种情况的发生不是等可能的经过计算可知,这5种情况出现的概率如下:所摸球的颜色出现的概率4个全红3红1绿2红2绿1红3绿4个全绿从表中可以看出,要想摸出“4个全红”或“4个全绿”的概率仅为,而摸到2红2绿的概率为,即有超过一半的机会失30元请你计算这种游戏中顾客每摸一次球的平均收益3、如图,在斜坡的顶部有一铁塔AB,B是
10、CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.若铁塔底座宽CD=12m,塔影长 m,小明和小华的身高都是1.6m,同一时刻小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB4、数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用探究一:求不等式的解集(1)探究的几何意义如图,在以O为原点的数轴上,设点A对应点的数为,由绝对值的定义可知,点A与O的距离为,可记为:AO=将线段AO向右平移一个单位,得到线段AB,此时点A对应的数为,点B的
11、对应数是1,因为AB= AO,所以AB=因此,的几何意义可以理解为数轴上所对应的点A与1所对应的点B之间的距离AB (2)求方程=2的解因为数轴上3与所对应的点与1所对应的点之间的距离都为2,所以方程的解为(3)求不等式的解集因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围请在图的数轴上表示的解集,并写出这个解集探究二:探究的几何意义(1)探究的几何意义如图,在直角坐标系中,设点M的坐标为,过M作MPx轴于P,作MQy轴于Q,则点P点坐标(),Q点坐标(),|OP|=,|OQ|=,在RtOPM中,PMOQy,则因此的几何意义可以理解
12、为点M与原点O(0,0)之间的距离OM(2)探究的几何意义如图,在直角坐标系中,设点 A的坐标为,由探究(二)(1)可知,AO=,将线段 AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)因为AB= AO,所以 AB=,因此的几何意义可以理解为点A()与点B(1,5)之间的距离(3)探究的几何意义请仿照探究二(2)的方法,在图中画出图形,并写出探究过程(4)的几何意义可以理解为:_.拓展应用:(1)+的几何意义可以理解为:点A与点E的距离与点AA与点F_(填写坐标)的距离之和(2)+的最小值为_(直接写出结果)5、在一平直河岸l同侧有A,B两个
13、村庄,A,B到l的距离分别是3km和2km,ABakm(a1)现计划在河岸l上建一抽水站P,用输水管向两个村庄供水方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1PB+BA(km)(其中BPl于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2PA+PB(km)(其中点A与点A关于l对称,AB与l交于点P)观察计算(1)在方案一中,d1 km(用含a的式子表示)(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2 km(用含a的式子表示)探索归纳(1)当a4时,比较大小:d1 d2(
14、填“”、“”或“”);当a6时,比较大小:d1 d2(填“”、“”或“”);(2)请你参考方框中的方法指导,就a(当a1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?-参考答案-一、单选题1、D【解析】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为:9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题2、
15、D【分析】求按比例尺缩小后面积,再根据实际判断.【详解】依题意得,缩小后面积是:800000平方米20002=0.2平方米,大约是宁波日报一个版面的面积.故选D【点睛】本题考核知识点:比例尺. 解题关键点:理解比例尺的意义.3、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.54.
16、65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键4、D【详解】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题5、C【分析】首先观察x=1是方程的一个根故可以把方程x4-6x3+13x2-12x+4=0化成(x-1)(x3-5x2+8
17、x-4)=0,再次发现x=1是方程x3-5x2+8x-4=0的一个有理根,于是原方程可以化为(x-1)2(x2-4x+4)=0,即可求出不同有理数的个数【详解】解:观察可知x=1是方程x4-6x3+13x2-12x+4=0的一个根,即(x-1)(x3-5x2+8x-4)=0,观察可知x=1还是x3-5x2+8x-4=0,原方程可以化为(x-1)2(x2-4x+4)=0,解得x=1或2,原方程的不同有理根有2个,故选C【点睛】本题主要考查高次方程的知识点,解答本题的关键是把方程x4-6x3+13x2-12x+4=0进行因式分解,此题难度不大6、B【分析】根据矩形的性质和勾股定理求出矩形的对角线长
18、,即可判断甲和乙,丙中图示情况不是最长【详解】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确,n=14;丙的思路与计算都错误,图示情况不是最长,n=(12+6)=13故选B【点睛】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键7、C【分析】设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可【详解】设每张床位提高x个2元,每天收入为y元根据题意得:y=(10+2x)(10010x)=20x2+100x+1000当x=2.5时,可使y
19、有最大值又x为整数,则x=2时,y=1120;x=3时,y=1120;则为使租出的床位少且租金高,每张床收费=10+32=16(元)故选C【点睛】本题考查了二次函数的实际应用,借助二次函数解决实际问题,利用二次函数对称性得出是解题的关键8、D【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.9、C【分析】先计算出一个人报名的选择有9种,然后根据必存在一种方式至少有10个人报名,可以让每一种方式都有9个人,然后只要任意一种再加一个人,继而可得出n的值【详解】解:对于一
20、个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有5种,故可得:每个人报名方式有9种,又题目要求有10人相同,故可以让每一种方式都有9个人,然后只要任意一种再加一个人即可,所以nmin=99+1=82故选:C【点睛】此题考查了计数方法的问题,根据题意得出每人的报名方式有9种是解答本题的关键,要注意仔细理解题意,难度较大10、C【分析】首先算出1吨的百万分之一是多少,然后与选择项比较即可【详解】因为1吨=1000千克,所以它的百万分之一是1克故选C【点睛】本题属于基础题,考查了估计的知识,解答时可联系生活实际去解二、填空题1、B【分析】分别求出三款软件评价不低
21、于四星的比例,然后再进行比较即可得到结论【详解】A软件的综合评价不低于四星的比例为:(52+30)100=0.82;B软件的综合评价不低于四星的比例为:(49+36)100=0.85;C软件的综合评价不低于四星的比例为:(35+30)100=0.65;0.650.820.85故李老师选择B款网上授课软件,能更好的开展线上学习的可能性最大故答案为:B【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比2、120【分析】可选值有4,5,6,11共8个数,分类讨论,即可得出结论.【详解】解:可选中间值有4,5,6,.,11共8个数,当中间数选4时,最小数只
22、能选1,而最大数可选7,8,9. .14共8个数值,有18种:当中间数选5时,最小数可选1,2两个,最大数可选8到14共7个,有27种,依此类推共计: 18+27+36+45+54 +63+72+81=120种,故答案为: 120.【点睛】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类是关键.3、【分析】先运用平方差公式,分解成(x2+2)(x2-2),再把x2-2写成x2-()2,符合平方差公式的特点,可以继续分解【详解】解:=故答案为:.【点睛】本题考查了实数范围内分解因式,利用完全平方公式或平方差公式在实数范围内进行因式分解,分解要彻底,直到不能分解为止4、【分析】根据图象
23、中的信息,可得储油罐内的油量情况;根据函数图象的横坐标可得其对应的函数值;根据函数图象的纵坐标,可得相应的自变量的值;根据函数图象的横坐标可得其对应的函数值【详解】由函数图象知,随着输油管开启时间的增加,储油罐内的油量减少,故说法正确;由函数图象知,输油管开启10分钟时,储油罐内的油量大于80立方米,故说法错误;由函数图象知,如果储油罐内至少存油40m3,那么输油管最多可以开启36分钟,故说法正确;由函数图象知,输油管开启30分钟后,储油罐内的油量只有原油量的一半,故说法正确结论正确的有故答案为:【点睛】本题考查了函数图象,利用了函数的定义,观察函数图象获取信息是解题关键5、 11 11 9
24、【分析】要想使游戏一次性通关,则三个箱子要把右边的三个阴影位置占完,且每个箱子只能占一个位置,观察发现,号箱子会阻碍其余两个箱子的移动,因此要先推动号箱子,其余两个箱子才能推动,据此分别得到其余箱子的移动情况【详解】解:(1)先推号箱子,这个箱子至少要走11个小方格;(2)再推号箱子,这个箱子至少要走11个小方格;(3)最后推号箱子,这个箱子至少要走9个小方格故答案为:;11;11;9【点睛】本题考查了解决问题的策略,解答本题要明确推箱子游戏的规则三、解答题1、 (1)见解析;(2)5,8,13.【分析】(1)根据已知条件作图可知时,所有图案个数5个;(2)推出长度为50cm时的所有图案,继而
25、根据已知猜想60cm时所有图案的个数即可.【详解】(1)如图:根据作图可知时,所有图案个数5个;(2)时,如图所示,所有图案个数8个;同理,时,所有图案个数13个,故答案为5,8,13.【点睛】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键2、元【分析】根据平均收益等于各种情况的概率与其收益的乘积的和解答即可【详解】解:根据题意,这种游戏中顾客每摸一次球的平均收益为:(元)【点睛】本题考查概率的意义,理解“平均收益”的意义,熟知平均收益等于各种情况的概率与其收益的乘积的和是解答的关键3、塔高AB为24m.【分析】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡
26、上的DE然后根据影长的比分别求得AG,GB长,把它们相加即可【详解】如图,过点D作,交AE于点F,过点F作,垂足为点G.由题意得,答:塔高AB为24m.【点睛】本题考查了相似三角形的应用;解决本题的难点是把塔高的影长分为在平地和斜坡上两部分;关键是利用平地和斜坡上的物高与影长的比得到相应的部分塔高的长度4、探究一(3) 解集为:探究二(3)()拓展应用(1)() (2)5【详解】试题分析:探究一(3):的解集就是数轴上所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知探究二(3):根据题目信息,的几何意义可以理解为点A()与点B()之间的距离拓展应用:根据题目信息知是与点F(
27、)的距离之和+表示点A与点E的距离与点A与点F()的距离之和最小值为E与点F()的距离5.试题解析:探究一(3) 解集为:探究二(3)如图,在直角坐标系中,设点 A的坐标为,由探究(二)(1)可知, AO=,将线段 AO先向左平移3个单位,再向下平移4个单位,得到线段AB,此时A的坐标为(),点B的坐标为()因为AB= AO,所以 AB=,因此的几何意义可以理解为点A()与点B()之间的距离拓展应用(1)() (2)5考点:信息阅读题5、观察计算:(1)a+2;(2);探索归纳:(1),;(2)当a5时,选方案二;当a5时,选方案一或方案二;当1a5时,选方案一【分析】观察计算:(1)由题意可
28、得PB2,即可得d1的值为a+2;(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出AK的值,在RtKBA由勾股定理可以求出AB的值就是管道长度;探索归纳:(1)把a4代入d1a+2和d2就可以比较其大小;把a6代入d1a+2和d2就可以比较其大小;(2)类比题目中所给的方法,分类进行讨论求出a的范围,继而确定选择方案【详解】(1)由题意可得PB2,d1PB+BAa+2;故答案为a+2;(2)因为BK2a21,AB2BK2+AK2a21+52a2+24d2;故答案为;探索归纳:(1)当a4时,d16,d2 ,d1d2;当a6时,d18,d2,d1d2;故答案为,;(2)d12d22(a+2)2()24a20当4a200,即a5时,d12d220,d1d20,d1d2;当4a200,即a5时,d12d220,d1d20,d1d2当4a200,即a5时,d12d220,d1d20,d1d2综上可知:当a5时,选方案二;当a5时,选方案一或方案二;当1a5时,选方案一【点睛】本题考查了轴对称的性质的运用,最短路线问题数学模式的运用,勾股定理的运用,数的大小的比较方法的运用,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法